Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrge0gelb Structured version   Visualization version   GIF version

Theorem infxrge0gelb 29372
 Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infxrge0glb.a (𝜑𝐴 ⊆ (0[,]+∞))
infxrge0glb.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
infxrge0gelb (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem infxrge0gelb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrge0glb.a . . . 4 (𝜑𝐴 ⊆ (0[,]+∞))
2 infxrge0glb.b . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
31, 2infxrge0glb 29371 . . 3 (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
43notbid 308 . 2 (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
5 iccssxr 12198 . . . 4 (0[,]+∞) ⊆ ℝ*
65, 2sseldi 3581 . . 3 (𝜑𝐵 ∈ ℝ*)
7 xrltso 11918 . . . . . . 7 < Or ℝ*
8 soss 5013 . . . . . . 7 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
95, 7, 8mp2 9 . . . . . 6 < Or (0[,]+∞)
109a1i 11 . . . . 5 (𝜑 → < Or (0[,]+∞))
11 xrge0infss 29366 . . . . . 6 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121, 11syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
1310, 12infcl 8338 . . . 4 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞))
145, 13sseldi 3581 . . 3 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*)
156, 14xrlenltd 10048 . 2 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵))
166adantr 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
171, 5syl6ss 3595 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
1817sselda 3583 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
1916, 18xrlenltd 10048 . . . 4 ((𝜑𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
2019ralbidva 2979 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥 < 𝐵))
21 ralnex 2986 . . 3 (∀𝑥𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵)
2220, 21syl6bb 276 . 2 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
234, 15, 223bitr4d 300 1 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ⊆ wss 3555   class class class wbr 4613   Or wor 4994  (class class class)co 6604  infcinf 8291  0cc0 9880  +∞cpnf 10015  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  [,]cicc 12120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-icc 12124 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator