MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrlb Structured version   Visualization version   GIF version

Theorem infxrlb 12717
Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrlb ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)

Proof of Theorem infxrlb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrcl 12716 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
21adantr 481 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
3 ssel2 3961 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
4 xrltso 12524 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrinfmss 12693 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
75, 6inflb 8942 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ 𝐵 < inf(𝐴, ℝ*, < )))
87imp 407 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ 𝐵 < inf(𝐴, ℝ*, < ))
92, 3, 8xrnltled 10698 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2105  wss 3935   class class class wbr 5058   Or wor 5467  infcinf 8894  *cxr 10663   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862
This theorem is referenced by:  infxrre  12719  infxrmnf  12720  infxrss  12722  ixxlb  12750  limsupval2  14827  imasdsf1olem  22912  ovollb  24009  ovolsslem  24014  infleinflem1  41518  infxrlbrnmpt2  41564  infleinf2  41568  infxrlesupxr  41590  inficc  41690  ressiooinf  41713  liminfgord  41915  cnrefiisplem  41990  ioorrnopnlem  42470  ovnlecvr  42721  ovn0lem  42728  ovnhoilem1  42764  ovnlecvr2  42773
  Copyright terms: Public domain W3C validator