![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxrss | Structured version Visualization version GIF version |
Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
Ref | Expression |
---|---|
infxrss | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 809 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ ℝ*) | |
2 | simpl 474 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → 𝐴 ⊆ 𝐵) | |
3 | 2 | sselda 3744 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
4 | infxrlb 12357 | . . . 4 ⊢ ((𝐵 ⊆ ℝ* ∧ 𝑥 ∈ 𝐵) → inf(𝐵, ℝ*, < ) ≤ 𝑥) | |
5 | 1, 3, 4 | syl2anc 696 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) ∧ 𝑥 ∈ 𝐴) → inf(𝐵, ℝ*, < ) ≤ 𝑥) |
6 | 5 | ralrimiva 3104 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → ∀𝑥 ∈ 𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥) |
7 | sstr 3752 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*) | |
8 | infxrcl 12356 | . . . 4 ⊢ (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*) | |
9 | 8 | adantl 473 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ∈ ℝ*) |
10 | infxrgelb 12358 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ inf(𝐵, ℝ*, < ) ∈ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥)) | |
11 | 7, 9, 10 | syl2anc 696 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥)) |
12 | 6, 11 | mpbird 247 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 class class class wbr 4804 infcinf 8512 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 |
This theorem is referenced by: infxrpnf 40172 ioossioobi 40246 liminflelimsuplem 40510 ovnsslelem 41280 ovolval5lem3 41374 |
Copyright terms: Public domain | W3C validator |