MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrss Structured version   Visualization version   GIF version

Theorem infxrss 12735
Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Assertion
Ref Expression
infxrss ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))

Proof of Theorem infxrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ*)
2 simpl 485 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴𝐵)
32sselda 3969 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥𝐵)
4 infxrlb 12730 . . . 4 ((𝐵 ⊆ ℝ*𝑥𝐵) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
51, 3, 4syl2anc 586 . . 3 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → inf(𝐵, ℝ*, < ) ≤ 𝑥)
65ralrimiva 3184 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥)
7 sstr 3977 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
8 infxrcl 12729 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
98adantl 484 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
10 infxrgelb 12731 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐵, ℝ*, < ) ∈ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
117, 9, 10syl2anc 586 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → (inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 inf(𝐵, ℝ*, < ) ≤ 𝑥))
126, 11mpbird 259 1 ((𝐴𝐵𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3140  wss 3938   class class class wbr 5068  infcinf 8907  *cxr 10676   < clt 10677  cle 10678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875
This theorem is referenced by:  infxrpnf  41728  ioossioobi  41800  liminflelimsuplem  42063  ovnsslelem  42849  ovolval5lem3  42943
  Copyright terms: Public domain W3C validator