Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inidl Structured version   Visualization version   GIF version

Theorem inidl 33447
Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
inidl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))

Proof of Theorem inidl
StepHypRef Expression
1 intprg 4481 . . 3 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
213adant1 1077 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} = (𝐼𝐽))
3 prnzg 4286 . . . . . 6 (𝐼 ∈ (Idl‘𝑅) → {𝐼, 𝐽} ≠ ∅)
43adantr 481 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ≠ ∅)
5 prssi 4326 . . . . 5 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ⊆ (Idl‘𝑅))
64, 5jca 554 . . . 4 ((𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)))
7 intidl 33446 . . . . 5 ((𝑅 ∈ RingOps ∧ {𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
873expb 1263 . . . 4 ((𝑅 ∈ RingOps ∧ ({𝐼, 𝐽} ≠ ∅ ∧ {𝐼, 𝐽} ⊆ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
96, 8sylan2 491 . . 3 ((𝑅 ∈ RingOps ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅))) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
1093impb 1257 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → {𝐼, 𝐽} ∈ (Idl‘𝑅))
112, 10eqeltrrd 2705 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼𝐽) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  cin 3559  wss 3560  c0 3896  {cpr 4155   cint 4445  cfv 5850  RingOpscrngo 33311  Idlcidl 33424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fv 5858  df-ov 6608  df-idl 33427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator