Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabd Structured version   Visualization version   GIF version

Theorem inintabd 37405
Description: Value of the intersection of class with the intersection of a non-empty class. (Contributed by RP, 13-Aug-2020.)
Hypothesis
Ref Expression
inintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
inintabd (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem inintabd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 inintabd.x . . . . . 6 (𝜑 → ∃𝑥𝜓)
2 pm5.5 351 . . . . . 6 (∃𝑥𝜓 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
31, 2syl 17 . . . . 5 (𝜑 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
43bicomd 213 . . . 4 (𝜑 → (𝑢𝐴 ↔ (∃𝑥𝜓𝑢𝐴)))
54anbi1d 740 . . 3 (𝜑 → ((𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)) ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
6 elinintab 37401 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)))
7 vex 3193 . . . 4 𝑢 ∈ V
8 elinintrab 37403 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
97, 8ax-mp 5 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥)))
105, 6, 93bitr4g 303 . 2 (𝜑 → (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)}))
1110eqrdv 2619 1 (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  {cab 2607  {crab 2912  Vcvv 3190  cin 3559  𝒫 cpw 4136   cint 4447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rab 2917  df-v 3192  df-in 3567  df-ss 3574  df-pw 4138  df-int 4448
This theorem is referenced by:  xpinintabd  37406
  Copyright terms: Public domain W3C validator