MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1 Structured version   Visualization version   GIF version

Theorem initoeu1 16432
Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem initoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu1.a . . 3 (𝜑𝐴 ∈ (InitO‘𝐶))
2 eqid 2609 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2609 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4isinitoi 16424 . . 3 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
61, 5mpdan 698 . 2 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
7 initoeu1.b . . . . 5 (𝜑𝐵 ∈ (InitO‘𝐶))
82, 3, 4isinitoi 16424 . . . . 5 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
97, 8mpdan 698 . . . 4 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
10 oveq2 6534 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴(Hom ‘𝐶)𝑏) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2672 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2477 . . . . . . . . 9 (𝑏 = 𝐵 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3277 . . . . . . . 8 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2609 . . . . . . . . . . . . . . 15 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprr 791 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprl 789 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 16207 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2481 . . . . . . . . . . . . . . . 16 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq2 6534 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝐴 → (𝐵(Hom ‘𝐶)𝑎) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2477 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3279 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2481 . . . . . . . . . . . . . . . . . 18 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 448 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 760 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2609 . . . . . . . . . . . . . . . . . . . . . 22 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 1, 72initoinv 16431 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
35343exp 1255 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3635adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)))
3736imp31 446 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
382, 30, 31, 32, 33, 14, 37inviso1 16197 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3938ex 448 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4039eximdv 1832 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4140expcom 449 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241exlimiv 1844 . . . . . . . . . . . . . . . . 17 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4342com3l 86 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4443impd 445 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4521, 29, 44syl2and 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4645imp 443 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
47 simprl 789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
48 euelss 3872 . . . . . . . . . . . . 13 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4919, 46, 47, 48syl3anc 1317 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5049exp42 636 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150com24 92 . . . . . . . . . 10 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5251com14 93 . . . . . . . . 9 (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5352expd 450 . . . . . . . 8 (𝐵 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5413, 53syld 45 . . . . . . 7 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5554com12 32 . . . . . 6 (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5655com15 98 . . . . 5 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5756impd 445 . . . 4 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
589, 57mpd 15 . . 3 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5958impd 445 . 2 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
606, 59mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  ∃!weu 2457  wral 2895  wss 3539   class class class wbr 4577  cfv 5789  (class class class)co 6526  Basecbs 15643  Hom chom 15727  Catccat 16096  Invcinv 16176  Isociso 16177  InitOcinito 16409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-1st 7036  df-2nd 7037  df-cat 16100  df-cid 16101  df-sect 16178  df-inv 16179  df-iso 16180  df-inito 16412
This theorem is referenced by:  initoeu1w  16433
  Copyright terms: Public domain W3C validator