MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem0 Structured version   Visualization version   GIF version

Theorem initoeu2lem0 17261
Description: Lemma 0 for initoeu2 17264. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem0 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))

Proof of Theorem initoeu2lem0
StepHypRef Expression
1 3simpa 1140 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))))
2 simp3 1130 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
32eqcomd 2824 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
4 initoeu2lem.x . . 3 𝑋 = (Base‘𝐶)
5 eqid 2818 . . 3 (Inv‘𝐶) = (Inv‘𝐶)
6 initoeu1.c . . . . 5 (𝜑𝐶 ∈ Cat)
76adantr 481 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
87adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐶 ∈ Cat)
9 simpr1 1186 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
109adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐴𝑋)
11 simpr2 1187 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
1211adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐵𝑋)
13 simplr3 1209 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐷𝑋)
14 initoeu2lem.i . . . . . . . 8 𝐼 = (Iso‘𝐶)
1514oveqi 7158 . . . . . . 7 (𝐵𝐼𝐴) = (𝐵(Iso‘𝐶)𝐴)
1615eleq2i 2901 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) ↔ 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1716biimpi 217 . . . . 5 (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
18173ad2ant1 1125 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1918adantl 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
20 initoeu2lem.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
2120oveqi 7158 . . . . . . 7 (𝐵𝐻𝐷) = (𝐵(Hom ‘𝐶)𝐷)
2221eleq2i 2901 . . . . . 6 (𝐺 ∈ (𝐵𝐻𝐷) ↔ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2322biimpi 217 . . . . 5 (𝐺 ∈ (𝐵𝐻𝐷) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
24233ad2ant3 1127 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2524adantl 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
26 eqid 2818 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
27 initoeu2lem.o . . . 4 = (comp‘𝐶)
284, 26, 14, 7, 11, 9isohom 17034 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐵𝐼𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
2928sseld 3963 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3029com12 32 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
31303ad2ant1 1125 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3231impcom 408 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))
3320oveqi 7158 . . . . . . . 8 (𝐴𝐻𝐷) = (𝐴(Hom ‘𝐶)𝐷)
3433eleq2i 2901 . . . . . . 7 (𝐹 ∈ (𝐴𝐻𝐷) ↔ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3534biimpi 217 . . . . . 6 (𝐹 ∈ (𝐴𝐻𝐷) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
36353ad2ant2 1126 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3736adantl 482 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
384, 26, 27, 8, 12, 10, 13, 32, 37catcocl 16944 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵(Hom ‘𝐶)𝐷))
39 eqid 2818 . . 3 ((𝐵(Inv‘𝐶)𝐴)‘𝐾) = ((𝐵(Inv‘𝐶)𝐴)‘𝐾)
4027oveqi 7158 . . 3 (⟨𝐴, 𝐵 𝐷) = (⟨𝐴, 𝐵⟩(comp‘𝐶)𝐷)
414, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40rcaninv 17052 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
421, 3, 41sylc 65 1 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cop 4563  cfv 6348  (class class class)co 7145  Basecbs 16471  Hom chom 16564  compcco 16565  Catccat 16923  Invcinv 17003  Isociso 17004  InitOcinito 17236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-cat 16927  df-cid 16928  df-sect 17005  df-inv 17006  df-iso 17007
This theorem is referenced by:  initoeu2lem1  17262
  Copyright terms: Public domain W3C validator