MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem1 Structured version   Visualization version   GIF version

Theorem initoeu2lem1 17277
Description: Lemma 1 for initoeu2 17279. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓   𝐷,𝑓   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐾   𝑓,𝐻   𝑓,𝑋   ,𝑓

Proof of Theorem initoeu2lem1
StepHypRef Expression
1 eusn 4669 . . . 4 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ↔ ∃𝑓(𝐴𝐻𝐷) = {𝑓})
2 initoeu2lem.x . . . . . . . . . . . 12 𝑋 = (Base‘𝐶)
3 eqid 2824 . . . . . . . . . . . 12 (Inv‘𝐶) = (Inv‘𝐶)
4 initoeu1.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
54ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ Cat)
6 simpr2 1191 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
76adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐵𝑋)
8 simpr1 1190 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
98adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐴𝑋)
10 initoeu2lem.i . . . . . . . . . . . 12 𝐼 = (Iso‘𝐶)
112, 3, 5, 7, 9, 10invf 17041 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐵(Inv‘𝐶)𝐴):(𝐵𝐼𝐴)⟶(𝐴𝐼𝐵))
12 simpr 487 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐾 ∈ (𝐵𝐼𝐴))
1311, 12ffvelrnd 6855 . . . . . . . . . 10 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵))
14 initoeu2lem.h . . . . . . . . . . . . . . . . . 18 𝐻 = (Hom ‘𝐶)
154adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
162, 14, 10, 15, 8, 6isohom 17049 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1716adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵))
1817sselda 3970 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
19 initoeu2lem.o . . . . . . . . . . . . . . . . . 18 = (comp‘𝐶)
2015ad4antr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
218ad4antr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
226ad4antr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
23 simpr3 1192 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐷𝑋)
2423ad4antr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
25 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
26 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵𝐻𝐷))
272, 14, 19, 20, 21, 22, 24, 25, 26catcocl 16959 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
2815ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat)
298ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐴𝑋)
306ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐵𝑋)
3123ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐷𝑋)
32 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵))
33 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))
342, 14, 19, 28, 29, 30, 31, 32, 33catcocl 16959 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))
3534exp31 422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3635ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))))
3736imp 409 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)))
38 eleq2 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴𝐻𝐷) = {𝑓} → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
3938adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
40 ovex 7192 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
41 elsng 4584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4240, 41mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4339, 42bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
44 eleq2 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓}))
45 ovex 7192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V
46 elsng 4584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4745, 46mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4844, 47bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
4948adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓))
50 eqeq2 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5150eqcoms 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
5251adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))))
53 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → (𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)))
54 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐾 ∈ (𝐵𝐼𝐴))
55 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐹 ∈ (𝐴𝐻𝐷))
56 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 ∈ (𝐵𝐻𝐷))
57 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
58 initoeu1.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑𝐴 ∈ (InitO‘𝐶))
594, 58, 2, 14, 10, 19initoeu2lem0 17276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6053, 54, 55, 56, 57, 59syl131anc 1379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
6160exp43 439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6261adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6352, 62sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
6463ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6564adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6649, 65sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6766com23 86 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6843, 67sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
6968com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7069ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7170com24 95 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7271adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7337, 72syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7473com25 99 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))))
7574imp 409 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7627, 75mpd 15 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
7776ex 415 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7818, 77mpdan 685 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
7978com15 101 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))))
8079imp 409 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))))
8180impcom 410 . . . . . . . . . . 11 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8281com13 88 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8313, 82mpdan 685 . . . . . . . . 9 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8483expimpd 456 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
85843impia 1113 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8685com12 32 . . . . . 6 (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
8786ex 415 . . . . 5 ((𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
8887exlimiv 1930 . . . 4 (∃𝑓(𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
891, 88sylbi 219 . . 3 (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))))
90893impib 1112 . 2 ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
9190com12 32 1 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  ∃!weu 2652  Vcvv 3497  wss 3939  {csn 4570  cop 4576  cfv 6358  (class class class)co 7159  Basecbs 16486  Hom chom 16579  compcco 16580  Catccat 16938  Invcinv 17018  Isociso 17019  InitOcinito 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-cat 16942  df-cid 16943  df-sect 17020  df-inv 17021  df-iso 17022
This theorem is referenced by:  initoeu2lem2  17278
  Copyright terms: Public domain W3C validator