MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inopab Structured version   Visualization version   GIF version

Theorem inopab 5285
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem inopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5280 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relin1 5269 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 5 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopab 5280 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
5 sban 2427 . . . 4 ([𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓))
6 sban 2427 . . . . 5 ([𝑧 / 𝑥](𝜑𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
76sbbii 1944 . . . 4 ([𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓))
8 opelopabsbALT 5013 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
9 opelopabsbALT 5013 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓)
108, 9anbi12i 733 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓))
115, 7, 103bitr4ri 293 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓))
12 elin 3829 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
13 opelopabsbALT 5013 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑𝜓))
1411, 12, 133bitr4i 292 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)})
153, 4, 14eqrelriiv 5248 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  [wsb 1937  wcel 2030  cin 3606  cop 4216  {copab 4745  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746  df-xp 5149  df-rel 5150
This theorem is referenced by:  inxp  5287  resopab  5481  fndmin  6364  cnvoprab  7274  wemapwe  8632  dfiso2  16479  frgpuplem  18231  ltbwe  19520  opsrtoslem1  19532  pjfval2  20101  lgsquadlem3  25152  br1cosscnvxrn  34364  1cosscnvxrn  34365  dnwech  37935  fgraphopab  38105
  Copyright terms: Public domain W3C validator