MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfrac2 Structured version   Visualization version   GIF version

Theorem intfrac2 12613
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 12641? (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfrac2.1 𝑍 = (⌊‘𝐴)
intfrac2.2 𝐹 = (𝐴𝑍)
Assertion
Ref Expression
intfrac2 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))

Proof of Theorem intfrac2
StepHypRef Expression
1 fracge0 12561 . . 3 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
2 intfrac2.2 . . . 4 𝐹 = (𝐴𝑍)
3 intfrac2.1 . . . . 5 𝑍 = (⌊‘𝐴)
43oveq2i 6626 . . . 4 (𝐴𝑍) = (𝐴 − (⌊‘𝐴))
52, 4eqtri 2643 . . 3 𝐹 = (𝐴 − (⌊‘𝐴))
61, 5syl6breqr 4665 . 2 (𝐴 ∈ ℝ → 0 ≤ 𝐹)
7 fraclt1 12559 . . 3 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
85, 7syl5eqbr 4658 . 2 (𝐴 ∈ ℝ → 𝐹 < 1)
92oveq2i 6626 . . 3 (𝑍 + 𝐹) = (𝑍 + (𝐴𝑍))
10 flcl 12552 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
113, 10syl5eqel 2702 . . . . 5 (𝐴 ∈ ℝ → 𝑍 ∈ ℤ)
1211zcnd 11443 . . . 4 (𝐴 ∈ ℝ → 𝑍 ∈ ℂ)
13 recn 9986 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1412, 13pncan3d 10355 . . 3 (𝐴 ∈ ℝ → (𝑍 + (𝐴𝑍)) = 𝐴)
159, 14syl5req 2668 . 2 (𝐴 ∈ ℝ → 𝐴 = (𝑍 + 𝐹))
166, 8, 153jca 1240 1 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   < clt 10034  cle 10035  cmin 10226  cz 11337  cfl 12547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fl 12549
This theorem is referenced by:  intfracq  12614  fldiv  12615
  Copyright terms: Public domain W3C validator