Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intminss Structured version   Visualization version   GIF version

Theorem intminss 4475
 Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
intminss ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 3351 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
3 intss1 4464 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → {𝑥𝐵𝜑} ⊆ 𝐴)
42, 3sylbir 225 1 ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {crab 2912   ⊆ wss 3560  ∩ cint 4447 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-in 3567  df-ss 3574  df-int 4448 This theorem is referenced by:  onintss  5744  knatar  6572  cardonle  8743  coftr  9055  wuncss  9527  ist1-3  21093  sigagenss  30035  ldgenpisyslem1  30049  dynkin  30053  nodenselem5  31601  nobndlem6  31613  nobndlem8  31615  fneint  32038  igenmin  33534  pclclN  34696  dfrcl2  37486
 Copyright terms: Public domain W3C validator