MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intopsn Structured version   Visualization version   GIF version

Theorem intopsn 17858
Description: The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 20042. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 485 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → :(𝐵 × 𝐵)⟶𝐵)
2 id 22 . . . . . 6 (𝐵 = {𝑍} → 𝐵 = {𝑍})
32sqxpeqd 5581 . . . . 5 (𝐵 = {𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍}))
43, 2feq23d 6503 . . . 4 (𝐵 = {𝑍} → ( :(𝐵 × 𝐵)⟶𝐵 :({𝑍} × {𝑍})⟶{𝑍}))
51, 4syl5ibcom 247 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} → :({𝑍} × {𝑍})⟶{𝑍}))
6 fdm 6516 . . . . . . 7 ( :(𝐵 × 𝐵)⟶𝐵 → dom = (𝐵 × 𝐵))
76eqcomd 2827 . . . . . 6 ( :(𝐵 × 𝐵)⟶𝐵 → (𝐵 × 𝐵) = dom )
87adantr 483 . . . . 5 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 × 𝐵) = dom )
9 fdm 6516 . . . . . 6 ( :({𝑍} × {𝑍})⟶{𝑍} → dom = ({𝑍} × {𝑍}))
109eqeq2d 2832 . . . . 5 ( :({𝑍} × {𝑍})⟶{𝑍} → ((𝐵 × 𝐵) = dom ↔ (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
118, 10syl5ibcom 247 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
12 xpid11 5796 . . . 4 ((𝐵 × 𝐵) = ({𝑍} × {𝑍}) ↔ 𝐵 = {𝑍})
1311, 12syl6ib 253 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → 𝐵 = {𝑍}))
145, 13impbid 214 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ :({𝑍} × {𝑍})⟶{𝑍}))
15 simpr 487 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → 𝑍𝐵)
16 xpsng 6895 . . . 4 ((𝑍𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1715, 16sylancom 590 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1817feq2d 6494 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} ↔ :{⟨𝑍, 𝑍⟩}⟶{𝑍}))
19 opex 5348 . . . 4 𝑍, 𝑍⟩ ∈ V
20 fsng 6893 . . . 4 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2119, 20mpan 688 . . 3 (𝑍𝐵 → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2221adantl 484 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2314, 18, 223bitrd 307 1 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4560  cop 4566   × cxp 5547  dom cdm 5549  wf 6345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356
This theorem is referenced by:  mgmb1mgm1  17859
  Copyright terms: Public domain W3C validator