Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intsal Structured version   Visualization version   GIF version

Theorem intsal 39855
Description: The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 39854). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
intsal.ga (𝜑𝐺 ⊆ SAlg)
intsal.gn0 (𝜑𝐺 ≠ ∅)
intsal.x ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
Assertion
Ref Expression
intsal (𝜑 𝐺 ∈ SAlg)
Distinct variable groups:   𝐺,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem intsal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝜑𝑠𝐺) → 𝜑)
2 intsal.ga . . . . . . 7 (𝜑𝐺 ⊆ SAlg)
32sselda 3583 . . . . . 6 ((𝜑𝑠𝐺) → 𝑠 ∈ SAlg)
4 simpr 477 . . . . . . 7 ((𝜑𝑠 ∈ SAlg) → 𝑠 ∈ SAlg)
5 0sal 39847 . . . . . . 7 (𝑠 ∈ SAlg → ∅ ∈ 𝑠)
64, 5syl 17 . . . . . 6 ((𝜑𝑠 ∈ SAlg) → ∅ ∈ 𝑠)
71, 3, 6syl2anc 692 . . . . 5 ((𝜑𝑠𝐺) → ∅ ∈ 𝑠)
87ralrimiva 2960 . . . 4 (𝜑 → ∀𝑠𝐺 ∅ ∈ 𝑠)
9 0ex 4750 . . . . 5 ∅ ∈ V
109elint2 4447 . . . 4 (∅ ∈ 𝐺 ↔ ∀𝑠𝐺 ∅ ∈ 𝑠)
118, 10sylibr 224 . . 3 (𝜑 → ∅ ∈ 𝐺)
12 intsal.x . . . . . . . . . 10 ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
13 intsal.gn0 . . . . . . . . . . . . 13 (𝜑𝐺 ≠ ∅)
142, 13, 12intsaluni 39854 . . . . . . . . . . . 12 (𝜑 𝐺 = 𝑋)
1514eqcomd 2627 . . . . . . . . . . 11 (𝜑𝑋 = 𝐺)
1615adantr 481 . . . . . . . . . 10 ((𝜑𝑠𝐺) → 𝑋 = 𝐺)
1712, 16eqtr2d 2656 . . . . . . . . 9 ((𝜑𝑠𝐺) → 𝐺 = 𝑠)
1817difeq1d 3705 . . . . . . . 8 ((𝜑𝑠𝐺) → ( 𝐺𝑦) = ( 𝑠𝑦))
1918adantlr 750 . . . . . . 7 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝐺𝑦) = ( 𝑠𝑦))
203adantlr 750 . . . . . . . 8 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → 𝑠 ∈ SAlg)
21 elinti 4450 . . . . . . . . . 10 (𝑦 𝐺 → (𝑠𝐺𝑦𝑠))
2221imp 445 . . . . . . . . 9 ((𝑦 𝐺𝑠𝐺) → 𝑦𝑠)
2322adantll 749 . . . . . . . 8 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → 𝑦𝑠)
24 saldifcl 39846 . . . . . . . 8 ((𝑠 ∈ SAlg ∧ 𝑦𝑠) → ( 𝑠𝑦) ∈ 𝑠)
2520, 23, 24syl2anc 692 . . . . . . 7 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝑠𝑦) ∈ 𝑠)
2619, 25eqeltrd 2698 . . . . . 6 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝐺𝑦) ∈ 𝑠)
2726ralrimiva 2960 . . . . 5 ((𝜑𝑦 𝐺) → ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠)
28 intex 4780 . . . . . . . . . . 11 (𝐺 ≠ ∅ ↔ 𝐺 ∈ V)
2928biimpi 206 . . . . . . . . . 10 (𝐺 ≠ ∅ → 𝐺 ∈ V)
3013, 29syl 17 . . . . . . . . 9 (𝜑 𝐺 ∈ V)
31 uniexg 6908 . . . . . . . . 9 ( 𝐺 ∈ V → 𝐺 ∈ V)
3230, 31syl 17 . . . . . . . 8 (𝜑 𝐺 ∈ V)
33 difexg 4768 . . . . . . . 8 ( 𝐺 ∈ V → ( 𝐺𝑦) ∈ V)
3432, 33syl 17 . . . . . . 7 (𝜑 → ( 𝐺𝑦) ∈ V)
3534adantr 481 . . . . . 6 ((𝜑𝑦 𝐺) → ( 𝐺𝑦) ∈ V)
36 elintg 4448 . . . . . 6 (( 𝐺𝑦) ∈ V → (( 𝐺𝑦) ∈ 𝐺 ↔ ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠))
3735, 36syl 17 . . . . 5 ((𝜑𝑦 𝐺) → (( 𝐺𝑦) ∈ 𝐺 ↔ ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠))
3827, 37mpbird 247 . . . 4 ((𝜑𝑦 𝐺) → ( 𝐺𝑦) ∈ 𝐺)
3938ralrimiva 2960 . . 3 (𝜑 → ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺)
403ad4ant14 1290 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑠 ∈ SAlg)
41 elpwi 4140 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝐺𝑦 𝐺)
4241adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦 𝐺)
43 intss1 4457 . . . . . . . . . . . . 13 (𝑠𝐺 𝐺𝑠)
4443adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝐺𝑠)
4542, 44sstrd 3593 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦𝑠)
46 vex 3189 . . . . . . . . . . . 12 𝑦 ∈ V
4746elpw 4136 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑠𝑦𝑠)
4845, 47sylibr 224 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
4948adantll 749 . . . . . . . . 9 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
5049adantlr 750 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
51 simplr 791 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦 ≼ ω)
5240, 50, 51salunicl 39843 . . . . . . 7 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦𝑠)
5352ralrimiva 2960 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → ∀𝑠𝐺 𝑦𝑠)
54 vuniex 6907 . . . . . . . 8 𝑦 ∈ V
5554a1i 11 . . . . . . 7 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → 𝑦 ∈ V)
56 elintg 4448 . . . . . . 7 ( 𝑦 ∈ V → ( 𝑦 𝐺 ↔ ∀𝑠𝐺 𝑦𝑠))
5755, 56syl 17 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → ( 𝑦 𝐺 ↔ ∀𝑠𝐺 𝑦𝑠))
5853, 57mpbird 247 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → 𝑦 𝐺)
5958ex 450 . . . 4 ((𝜑𝑦 ∈ 𝒫 𝐺) → (𝑦 ≼ ω → 𝑦 𝐺))
6059ralrimiva 2960 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))
6111, 39, 603jca 1240 . 2 (𝜑 → (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺)))
62 issal 39841 . . 3 ( 𝐺 ∈ V → ( 𝐺 ∈ SAlg ↔ (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))))
6330, 62syl 17 . 2 (𝜑 → ( 𝐺 ∈ SAlg ↔ (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))))
6461, 63mpbird 247 1 (𝜑 𝐺 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3552  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402   cint 4440   class class class wbr 4613  ωcom 7012  cdom 7897  SAlgcsalg 39835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-salg 39836
This theorem is referenced by:  salgencl  39857
  Copyright terms: Public domain W3C validator