Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intsal Structured version   Visualization version   GIF version

Theorem intsal 41069
 Description: The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 41068). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
intsal.ga (𝜑𝐺 ⊆ SAlg)
intsal.gn0 (𝜑𝐺 ≠ ∅)
intsal.x ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
Assertion
Ref Expression
intsal (𝜑 𝐺 ∈ SAlg)
Distinct variable groups:   𝐺,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem intsal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . 6 ((𝜑𝑠𝐺) → 𝜑)
2 intsal.ga . . . . . . 7 (𝜑𝐺 ⊆ SAlg)
32sselda 3744 . . . . . 6 ((𝜑𝑠𝐺) → 𝑠 ∈ SAlg)
4 simpr 479 . . . . . . 7 ((𝜑𝑠 ∈ SAlg) → 𝑠 ∈ SAlg)
5 0sal 41061 . . . . . . 7 (𝑠 ∈ SAlg → ∅ ∈ 𝑠)
64, 5syl 17 . . . . . 6 ((𝜑𝑠 ∈ SAlg) → ∅ ∈ 𝑠)
71, 3, 6syl2anc 696 . . . . 5 ((𝜑𝑠𝐺) → ∅ ∈ 𝑠)
87ralrimiva 3104 . . . 4 (𝜑 → ∀𝑠𝐺 ∅ ∈ 𝑠)
9 0ex 4942 . . . . 5 ∅ ∈ V
109elint2 4634 . . . 4 (∅ ∈ 𝐺 ↔ ∀𝑠𝐺 ∅ ∈ 𝑠)
118, 10sylibr 224 . . 3 (𝜑 → ∅ ∈ 𝐺)
12 intsal.x . . . . . . . . . 10 ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
13 intsal.gn0 . . . . . . . . . . . . 13 (𝜑𝐺 ≠ ∅)
142, 13, 12intsaluni 41068 . . . . . . . . . . . 12 (𝜑 𝐺 = 𝑋)
1514eqcomd 2766 . . . . . . . . . . 11 (𝜑𝑋 = 𝐺)
1615adantr 472 . . . . . . . . . 10 ((𝜑𝑠𝐺) → 𝑋 = 𝐺)
1712, 16eqtr2d 2795 . . . . . . . . 9 ((𝜑𝑠𝐺) → 𝐺 = 𝑠)
1817difeq1d 3870 . . . . . . . 8 ((𝜑𝑠𝐺) → ( 𝐺𝑦) = ( 𝑠𝑦))
1918adantlr 753 . . . . . . 7 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝐺𝑦) = ( 𝑠𝑦))
203adantlr 753 . . . . . . . 8 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → 𝑠 ∈ SAlg)
21 elinti 4637 . . . . . . . . . 10 (𝑦 𝐺 → (𝑠𝐺𝑦𝑠))
2221imp 444 . . . . . . . . 9 ((𝑦 𝐺𝑠𝐺) → 𝑦𝑠)
2322adantll 752 . . . . . . . 8 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → 𝑦𝑠)
24 saldifcl 41060 . . . . . . . 8 ((𝑠 ∈ SAlg ∧ 𝑦𝑠) → ( 𝑠𝑦) ∈ 𝑠)
2520, 23, 24syl2anc 696 . . . . . . 7 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝑠𝑦) ∈ 𝑠)
2619, 25eqeltrd 2839 . . . . . 6 (((𝜑𝑦 𝐺) ∧ 𝑠𝐺) → ( 𝐺𝑦) ∈ 𝑠)
2726ralrimiva 3104 . . . . 5 ((𝜑𝑦 𝐺) → ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠)
28 intex 4969 . . . . . . . . . . 11 (𝐺 ≠ ∅ ↔ 𝐺 ∈ V)
2928biimpi 206 . . . . . . . . . 10 (𝐺 ≠ ∅ → 𝐺 ∈ V)
3013, 29syl 17 . . . . . . . . 9 (𝜑 𝐺 ∈ V)
31 uniexg 7121 . . . . . . . . 9 ( 𝐺 ∈ V → 𝐺 ∈ V)
3230, 31syl 17 . . . . . . . 8 (𝜑 𝐺 ∈ V)
33 difexg 4960 . . . . . . . 8 ( 𝐺 ∈ V → ( 𝐺𝑦) ∈ V)
3432, 33syl 17 . . . . . . 7 (𝜑 → ( 𝐺𝑦) ∈ V)
3534adantr 472 . . . . . 6 ((𝜑𝑦 𝐺) → ( 𝐺𝑦) ∈ V)
36 elintg 4635 . . . . . 6 (( 𝐺𝑦) ∈ V → (( 𝐺𝑦) ∈ 𝐺 ↔ ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠))
3735, 36syl 17 . . . . 5 ((𝜑𝑦 𝐺) → (( 𝐺𝑦) ∈ 𝐺 ↔ ∀𝑠𝐺 ( 𝐺𝑦) ∈ 𝑠))
3827, 37mpbird 247 . . . 4 ((𝜑𝑦 𝐺) → ( 𝐺𝑦) ∈ 𝐺)
3938ralrimiva 3104 . . 3 (𝜑 → ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺)
403ad4ant14 1209 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑠 ∈ SAlg)
41 elpwi 4312 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝐺𝑦 𝐺)
4241adantr 472 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦 𝐺)
43 intss1 4644 . . . . . . . . . . . . 13 (𝑠𝐺 𝐺𝑠)
4443adantl 473 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝐺𝑠)
4542, 44sstrd 3754 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦𝑠)
46 vex 3343 . . . . . . . . . . . 12 𝑦 ∈ V
4746elpw 4308 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑠𝑦𝑠)
4845, 47sylibr 224 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 𝐺𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
4948adantll 752 . . . . . . . . 9 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
5049adantlr 753 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦 ∈ 𝒫 𝑠)
51 simplr 809 . . . . . . . 8 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦 ≼ ω)
5240, 50, 51salunicl 41057 . . . . . . 7 ((((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) ∧ 𝑠𝐺) → 𝑦𝑠)
5352ralrimiva 3104 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → ∀𝑠𝐺 𝑦𝑠)
54 vuniex 7120 . . . . . . . 8 𝑦 ∈ V
5554a1i 11 . . . . . . 7 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → 𝑦 ∈ V)
56 elintg 4635 . . . . . . 7 ( 𝑦 ∈ V → ( 𝑦 𝐺 ↔ ∀𝑠𝐺 𝑦𝑠))
5755, 56syl 17 . . . . . 6 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → ( 𝑦 𝐺 ↔ ∀𝑠𝐺 𝑦𝑠))
5853, 57mpbird 247 . . . . 5 (((𝜑𝑦 ∈ 𝒫 𝐺) ∧ 𝑦 ≼ ω) → 𝑦 𝐺)
5958ex 449 . . . 4 ((𝜑𝑦 ∈ 𝒫 𝐺) → (𝑦 ≼ ω → 𝑦 𝐺))
6059ralrimiva 3104 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))
6111, 39, 603jca 1123 . 2 (𝜑 → (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺)))
62 issal 41055 . . 3 ( 𝐺 ∈ V → ( 𝐺 ∈ SAlg ↔ (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))))
6330, 62syl 17 . 2 (𝜑 → ( 𝐺 ∈ SAlg ↔ (∅ ∈ 𝐺 ∧ ∀𝑦 𝐺( 𝐺𝑦) ∈ 𝐺 ∧ ∀𝑦 ∈ 𝒫 𝐺(𝑦 ≼ ω → 𝑦 𝐺))))
6461, 63mpbird 247 1 (𝜑 𝐺 ∈ SAlg)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  Vcvv 3340   ∖ cdif 3712   ⊆ wss 3715  ∅c0 4058  𝒫 cpw 4302  ∪ cuni 4588  ∩ cint 4627   class class class wbr 4804  ωcom 7231   ≼ cdom 8121  SAlgcsalg 41049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-salg 41050 This theorem is referenced by:  salgencl  41071
 Copyright terms: Public domain W3C validator