Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intsaluni Structured version   Visualization version   GIF version

Theorem intsaluni 42602
Description: The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
intsaluni.ga (𝜑𝐺 ⊆ SAlg)
intsaluni.gn0 (𝜑𝐺 ≠ ∅)
intsaluni.x ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
Assertion
Ref Expression
intsaluni (𝜑 𝐺 = 𝑋)
Distinct variable groups:   𝐺,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem intsaluni
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . 2 𝑠𝜑
2 nfv 1909 . 2 𝑠 𝐺 = 𝑋
3 intsaluni.gn0 . . 3 (𝜑𝐺 ≠ ∅)
4 n0 4308 . . . 4 (𝐺 ≠ ∅ ↔ ∃𝑠 𝑠𝐺)
54biimpi 218 . . 3 (𝐺 ≠ ∅ → ∃𝑠 𝑠𝐺)
63, 5syl 17 . 2 (𝜑 → ∃𝑠 𝑠𝐺)
7 intss1 4882 . . . . . . 7 (𝑠𝐺 𝐺𝑠)
8 uniss 4851 . . . . . . 7 ( 𝐺𝑠 𝐺 𝑠)
97, 8syl 17 . . . . . 6 (𝑠𝐺 𝐺 𝑠)
109adantl 484 . . . . 5 ((𝜑𝑠𝐺) → 𝐺 𝑠)
11 intsaluni.x . . . . 5 ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
1210, 11sseqtrd 4005 . . . 4 ((𝜑𝑠𝐺) → 𝐺𝑋)
1311adantr 483 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑋)
14 eleq1w 2893 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 → (𝑠𝐺𝑡𝐺))
1514anbi2d 630 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ((𝜑𝑠𝐺) ↔ (𝜑𝑡𝐺)))
16 unieq 4838 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 𝑠 = 𝑡)
1716eqeq1d 2821 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
1815, 17imbi12d 347 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (((𝜑𝑠𝐺) → 𝑠 = 𝑋) ↔ ((𝜑𝑡𝐺) → 𝑡 = 𝑋)))
1918, 11chvarvv 1999 . . . . . . . . . . . . 13 ((𝜑𝑡𝐺) → 𝑡 = 𝑋)
2019eqcomd 2825 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑋 = 𝑡)
2120adantlr 713 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑋 = 𝑡)
2213, 21eqtrd 2854 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑡)
23 intsaluni.ga . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ SAlg)
2423sselda 3965 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑡 ∈ SAlg)
25 saluni 42599 . . . . . . . . . . . 12 (𝑡 ∈ SAlg → 𝑡𝑡)
2624, 25syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝐺) → 𝑡𝑡)
2726adantlr 713 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑡𝑡)
2822, 27eqeltrd 2911 . . . . . . . . 9 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠𝑡)
2928ralrimiva 3180 . . . . . . . 8 ((𝜑𝑠𝐺) → ∀𝑡𝐺 𝑠𝑡)
30 uniexg 7458 . . . . . . . . . 10 (𝑠𝐺 𝑠 ∈ V)
3130adantl 484 . . . . . . . . 9 ((𝜑𝑠𝐺) → 𝑠 ∈ V)
32 elintg 4875 . . . . . . . . 9 ( 𝑠 ∈ V → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3331, 32syl 17 . . . . . . . 8 ((𝜑𝑠𝐺) → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3429, 33mpbird 259 . . . . . . 7 ((𝜑𝑠𝐺) → 𝑠 𝐺)
3534adantr 483 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑠 𝐺)
36 simpr 487 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥𝑋)
3711eqcomd 2825 . . . . . . . 8 ((𝜑𝑠𝐺) → 𝑋 = 𝑠)
3837adantr 483 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑋 = 𝑠)
3936, 38eleqtrd 2913 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝑠)
40 eleq2 2899 . . . . . . 7 (𝑦 = 𝑠 → (𝑥𝑦𝑥 𝑠))
4140rspcev 3621 . . . . . 6 (( 𝑠 𝐺𝑥 𝑠) → ∃𝑦 𝐺𝑥𝑦)
4235, 39, 41syl2anc 586 . . . . 5 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → ∃𝑦 𝐺𝑥𝑦)
43 eluni2 4834 . . . . 5 (𝑥 𝐺 ↔ ∃𝑦 𝐺𝑥𝑦)
4442, 43sylibr 236 . . . 4 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝐺)
4512, 44eqelssd 3986 . . 3 ((𝜑𝑠𝐺) → 𝐺 = 𝑋)
4645ex 415 . 2 (𝜑 → (𝑠𝐺 𝐺 = 𝑋))
471, 2, 6, 46exlimimdd 2212 1 (𝜑 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  wne 3014  wral 3136  wrex 3137  Vcvv 3493  wss 3934  c0 4289   cuni 4830   cint 4867  SAlgcsalg 42583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-in 3941  df-ss 3950  df-nul 4290  df-pw 4539  df-uni 4831  df-int 4868  df-salg 42584
This theorem is referenced by:  intsal  42603  salgenuni  42610
  Copyright terms: Public domain W3C validator