MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   GIF version

Theorem invco 17040
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invco.o · = (comp‘𝐶)
invco.z (𝜑𝑍𝐵)
invco.f (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
invco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invco.o . . 3 · = (comp‘𝐶)
3 eqid 2821 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
4 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 invfval.x . . 3 (𝜑𝑋𝐵)
6 invfval.y . . 3 (𝜑𝑌𝐵)
7 invco.z . . 3 (𝜑𝑍𝐵)
8 invinv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 invfval.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
10 isoval.n . . . . . . . 8 𝐼 = (Iso‘𝐶)
111, 9, 4, 5, 6, 10isoval 17034 . . . . . . 7 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
128, 11eleqtrd 2915 . . . . . 6 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
131, 9, 4, 5, 6invfun 17033 . . . . . . 7 (𝜑 → Fun (𝑋𝑁𝑌))
14 funfvbrb 6820 . . . . . . 7 (Fun (𝑋𝑁𝑌) → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1513, 14syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1612, 15mpbid 234 . . . . 5 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
171, 9, 4, 5, 6, 3isinv 17029 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
1816, 17mpbid 234 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
1918simpld 497 . . 3 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
20 invco.f . . . . . . 7 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
211, 9, 4, 6, 7, 10isoval 17034 . . . . . . 7 (𝜑 → (𝑌𝐼𝑍) = dom (𝑌𝑁𝑍))
2220, 21eleqtrd 2915 . . . . . 6 (𝜑𝐺 ∈ dom (𝑌𝑁𝑍))
231, 9, 4, 6, 7invfun 17033 . . . . . . 7 (𝜑 → Fun (𝑌𝑁𝑍))
24 funfvbrb 6820 . . . . . . 7 (Fun (𝑌𝑁𝑍) → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2523, 24syl 17 . . . . . 6 (𝜑 → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2622, 25mpbid 234 . . . . 5 (𝜑𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺))
271, 9, 4, 6, 7, 3isinv 17029 . . . . 5 (𝜑 → (𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺) ↔ (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)))
2826, 27mpbid 234 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺))
2928simpld 497 . . 3 (𝜑𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺))
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 17025 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
3128simprd 498 . . 3 (𝜑 → ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)
3218simprd 498 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 17025 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
341, 9, 4, 5, 7, 3isinv 17029 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ∧ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
3530, 33, 34mpbir2and 711 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cop 4572   class class class wbr 5065  dom cdm 5554  Fun wfun 6348  cfv 6354  (class class class)co 7155  Basecbs 16482  compcco 16576  Catccat 16934  Sectcsect 17013  Invcinv 17014  Isociso 17015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-cat 16938  df-cid 16939  df-sect 17016  df-inv 17017  df-iso 17018
This theorem is referenced by:  isoco  17046  invisoinvl  17059
  Copyright terms: Public domain W3C validator