MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf Structured version   Visualization version   GIF version

Theorem invf 17032
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))

Proof of Theorem invf
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17028 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
76funfnd 6381 . . 3 (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))
8 isoval.n . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8isoval 17029 . . . 4 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
109fneq2d 6442 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)))
117, 10mpbird 259 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
12 df-rn 5561 . . . 4 ran (𝑋𝑁𝑌) = dom (𝑋𝑁𝑌)
131, 2, 3, 4, 5invsym2 17027 . . . . . 6 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1413dmeqd 5769 . . . . 5 (𝜑 → dom (𝑋𝑁𝑌) = dom (𝑌𝑁𝑋))
151, 2, 3, 5, 4, 8isoval 17029 . . . . 5 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋))
1614, 15eqtr4d 2859 . . . 4 (𝜑 → dom (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
1712, 16syl5eq 2868 . . 3 (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
18 eqimss 4023 . . 3 (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
1917, 18syl 17 . 2 (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
20 df-f 6354 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)))
2111, 19, 20sylanbrc 585 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wss 3936  ccnv 5549  dom cdm 5550  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  Catccat 16929  Invcinv 17009  Isociso 17010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-cat 16933  df-cid 16934  df-sect 17011  df-inv 17012  df-iso 17013
This theorem is referenced by:  invf1o  17033  invisoinvl  17054  invcoisoid  17056  isocoinvid  17057  rcaninv  17058  ffthiso  17193  initoeu2lem1  17268
  Copyright terms: Public domain W3C validator