MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso2 Structured version   Visualization version   GIF version

Theorem inviso2 17040
Description: If 𝐺 is an inverse to 𝐹, then 𝐺 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso2 (𝜑𝐺 ∈ (𝑌𝐼𝑋))

Proof of Theorem inviso2
StepHypRef Expression
1 invfval.b . 2 𝐵 = (Base‘𝐶)
2 invfval.n . 2 𝑁 = (Inv‘𝐶)
3 invfval.c . 2 (𝜑𝐶 ∈ Cat)
4 invfval.y . 2 (𝜑𝑌𝐵)
5 invfval.x . 2 (𝜑𝑋𝐵)
6 isoval.n . 2 𝐼 = (Iso‘𝐶)
7 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
81, 2, 3, 5, 4invsym 17035 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))
97, 8mpbid 234 . 2 (𝜑𝐺(𝑌𝑁𝑋)𝐹)
101, 2, 3, 4, 5, 6, 9inviso1 17039 1 (𝜑𝐺 ∈ (𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  Catccat 16938  Invcinv 17018  Isociso 17019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-cat 16942  df-cid 16943  df-sect 17020  df-inv 17021  df-iso 17022
This theorem is referenced by:  yonffthlem  17535
  Copyright terms: Public domain W3C validator