MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocpnfordt Structured version   Visualization version   GIF version

Theorem iocpnfordt 20924
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iocpnfordt (𝐴(,]+∞) ∈ (ordTop‘ ≤ )

Proof of Theorem iocpnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2626 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2626 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 20922 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 20915 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2701 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 20680 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 221 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 20676 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtr4i 3622 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 3759 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun1 3759 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2626 . . . . . . . 8 (𝐴(,]+∞) = (𝐴(,]+∞)
15 oveq1 6612 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥(,]+∞) = (𝐴(,]+∞))
1615eqeq2d 2636 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐴(,]+∞) = (𝑥(,]+∞) ↔ (𝐴(,]+∞) = (𝐴(,]+∞)))
1716rspcev 3300 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴(,]+∞) = (𝐴(,]+∞)) → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
1814, 17mpan2 706 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
19 eqid 2626 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
20 ovex 6633 . . . . . . . 8 (𝑥(,]+∞) ∈ V
2119, 20elrnmpti 5340 . . . . . . 7 ((𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
2218, 21sylibr 224 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)))
2313, 22sseldi 3586 . . . . 5 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2412, 23sseldi 3586 . . . 4 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2511, 24sseldi 3586 . . 3 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
2625adantr 481 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
27 df-ioc 12119 . . . . . 6 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
2827ixxf 12124 . . . . 5 (,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2928fdmi 6011 . . . 4 dom (,] = (ℝ* × ℝ*)
3029ndmov 6772 . . 3 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) = ∅)
31 0opn 20629 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
325, 31ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3330, 32syl6eqel 2712 . 2 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
3426, 33pm2.61i 176 1 (𝐴(,]+∞) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wcel 1992  wrex 2913  cun 3558  wss 3560  c0 3896  𝒫 cpw 4135  cmpt 4678   × cxp 5077  ran crn 5080  cfv 5850  (class class class)co 6605  +∞cpnf 10016  -∞cmnf 10017  *cxr 10018   < clt 10019  cle 10020  (,)cioo 12114  (,]cioc 12115  [,)cico 12116  topGenctg 16014  ordTopcordt 16075  Topctop 20612  TopBasesctb 20615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fi 8262  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-topgen 16020  df-ordt 16077  df-ps 17116  df-tsr 17117  df-top 20616  df-bases 20617  df-topon 20618
This theorem is referenced by:  xrlimcnp  24590  pnfneige0  29771  lmxrge0  29772
  Copyright terms: Public domain W3C validator