MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocpnfordt Structured version   Visualization version   GIF version

Theorem iocpnfordt 21067
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iocpnfordt (𝐴(,]+∞) ∈ (ordTop‘ ≤ )

Proof of Theorem iocpnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2651 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2651 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 21065 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 21058 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2727 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 20822 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 221 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 20818 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtr4i 3671 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 3809 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun1 3809 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2651 . . . . . . . 8 (𝐴(,]+∞) = (𝐴(,]+∞)
15 oveq1 6697 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥(,]+∞) = (𝐴(,]+∞))
1615eqeq2d 2661 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐴(,]+∞) = (𝑥(,]+∞) ↔ (𝐴(,]+∞) = (𝐴(,]+∞)))
1716rspcev 3340 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴(,]+∞) = (𝐴(,]+∞)) → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
1814, 17mpan2 707 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
19 eqid 2651 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
20 ovex 6718 . . . . . . . 8 (𝑥(,]+∞) ∈ V
2119, 20elrnmpti 5408 . . . . . . 7 ((𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
2218, 21sylibr 224 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)))
2313, 22sseldi 3634 . . . . 5 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2412, 23sseldi 3634 . . . 4 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2511, 24sseldi 3634 . . 3 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
2625adantr 480 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
27 df-ioc 12218 . . . . . 6 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
2827ixxf 12223 . . . . 5 (,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2928fdmi 6090 . . . 4 dom (,] = (ℝ* × ℝ*)
3029ndmov 6860 . . 3 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) = ∅)
31 0opn 20757 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
325, 31ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3330, 32syl6eqel 2738 . 2 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
3426, 33pm2.61i 176 1 (𝐴(,]+∞) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1523  wcel 2030  wrex 2942  cun 3605  wss 3607  c0 3948  𝒫 cpw 4191  cmpt 4762   × cxp 5141  ran crn 5144  cfv 5926  (class class class)co 6690  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  (,]cioc 12214  [,)cico 12215  topGenctg 16145  ordTopcordt 16206  Topctop 20746  TopBasesctb 20797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-topgen 16151  df-ordt 16208  df-ps 17247  df-tsr 17248  df-top 20747  df-topon 20764  df-bases 20798
This theorem is referenced by:  xrlimcnp  24740  pnfneige0  30125  lmxrge0  30126  xlimpnfvlem1  40380
  Copyright terms: Public domain W3C validator