MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssre Structured version   Visualization version   GIF version

Theorem iocssre 12211
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iocssre ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)

Proof of Theorem iocssre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elioc2 12194 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
21biimp3a 1429 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
32simp1d 1071 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
433expia 1264 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3594 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987  wss 3560   class class class wbr 4623  (class class class)co 6615  cr 9895  *cxr 10033   < clt 10034  cle 10035  (,]cioc 12134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-ioc 12138
This theorem is referenced by:  iocmnfcld  22512  lhop1  23715  negpitopissre  24224  eff1o  24233  dvlog2lem  24332  iocopn  39192  limcicciooub  39305  limcresiooub  39310  fourierdlem19  39680  fourierdlem33  39694  fourierdlem37  39698  fourierdlem46  39706  fourierdlem48  39708  fourierdlem49  39709  fourierdlem51  39711  fourierdlem63  39723  fourierdlem79  39739  fourierdlem89  39749  fourierdlem90  39750  fourierdlem91  39751  fourierdlem93  39753  fouriersw  39785
  Copyright terms: Public domain W3C validator