Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioo0 Structured version   Visualization version   GIF version

Theorem ioo0 12139
 Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioo0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ioo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooval 12138 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
21eqeq1d 2628 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅))
3 df-ne 2797 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅)
4 rabn0 3937 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
53, 4bitr3i 266 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
6 xrlttr 11917 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
763com23 1268 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
873expa 1262 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
98rexlimdva 3029 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) → 𝐴 < 𝐵))
10 qbtwnxr 11973 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
11 qre 11737 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1211rexrd 10034 . . . . . . . . . 10 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
1312anim1i 591 . . . . . . . . 9 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
1413reximi2 3009 . . . . . . . 8 (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
1510, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵))
16153expia 1264 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵)))
179, 16impbid 202 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥 < 𝐵) ↔ 𝐴 < 𝐵))
185, 17syl5bb 272 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐴 < 𝐵))
19 xrltnle 10050 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
2018, 19bitrd 268 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ ¬ 𝐵𝐴))
2120con4bid 307 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)} = ∅ ↔ 𝐵𝐴))
222, 21bitrd 268 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992   ≠ wne 2796  ∃wrex 2913  {crab 2916  ∅c0 3896   class class class wbr 4618  (class class class)co 6605  ℝ*cxr 10018   < clt 10019   ≤ cle 10020  ℚcq 11732  (,)cioo 12114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-ioo 12118 This theorem is referenced by:  ioon0  12140  iooid  12142  bndth  22660  ioombl  23235  ioovolcl  23239  itgsubstlem  23710  iccdifprioo  39140  qinioo  39160  ioodvbdlimc1  39441  ioodvbdlimc2  39443  volioore  39501  voliooico  39503  ovolval4lem1  40157  vonioo  40190
 Copyright terms: Public domain W3C validator