MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioof Structured version   Visualization version   GIF version

Theorem ioof 12309
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 12237 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 12273 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 ovex 6718 . . . . . 6 (𝑥(,)𝑦) ∈ V
43elpw 4197 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
52, 4mpbir 221 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
61, 5syl6eqelr 2739 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
76rgen2a 3006 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
8 df-ioo 12217 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
98fmpt2 7282 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
107, 9mpbi 220 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 2030  wral 2941  {crab 2945  wss 3607  𝒫 cpw 4191   class class class wbr 4685   × cxp 5141  wf 5922  (class class class)co 6690  cr 9973  *cxr 10111   < clt 10112  (,)cioo 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ioo 12217
This theorem is referenced by:  unirnioo  12311  dfioo2  12312  ioorebas  12313  qtopbaslem  22609  retopbas  22611  qdensere  22620  blssioo  22645  tgioo  22646  tgqioo  22650  re2ndc  22651  xrtgioo  22656  xrge0tsms  22684  bndth  22804  ovolfioo  23282  ovollb  23293  ovolicc2  23336  ovolfs2  23385  ioorf  23387  ioorinv  23390  ioorcl  23391  uniiccdif  23392  uniioovol  23393  uniiccvol  23394  uniioombllem2  23397  uniioombllem3a  23398  uniioombllem3  23399  uniioombllem4  23400  uniioombllem5  23401  uniioombl  23403  opnmblALT  23417  mbfdm  23440  mbfima  23444  mbfid  23448  ismbfd  23452  mbfimaopnlem  23467  i1fd  23493  xrge0tsmsd  29913  iccllysconn  31358  rellysconn  31359  relowlssretop  33341  relowlpssretop  33342  ftc1anc  33623  ftc2nc  33624  ioofun  40096  islptre  40169  volioof  40522  fvvolioof  40524  ovolval3  41182  ovolval4lem1  41184  ovolval5lem2  41188  ovolval5lem3  41189
  Copyright terms: Public domain W3C validator