Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinioc Structured version   Visualization version   GIF version

Theorem iooiinioc 41825
Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iooiinioc.1 (𝜑𝐴 ∈ ℝ*)
iooiinioc.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinioc (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinioc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinioc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21adantr 483 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
3 iooiinioc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43adantr 483 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
54rexrd 10685 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ*)
6 1nn 11643 . . . . . . . . . 10 1 ∈ ℕ
7 ioossre 12792 . . . . . . . . . 10 (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ
8 oveq2 7158 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
98oveq2d 7166 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
109oveq2d 7166 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1))))
1110sseq1d 3997 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3622 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
136, 7, 12mp2an 690 . . . . . . . . 9 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 4972 . . . . . . . . 9 (∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . . 8 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 487 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3967 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
1918rexrd 10685 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
20 1red 10636 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
21 ax-1ne0 10600 . . . . . . . . . . 11 1 ≠ 0
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
2320, 20, 22redivcld 11462 . . . . . . . . 9 (𝜑 → (1 / 1) ∈ ℝ)
243, 23readdcld 10664 . . . . . . . 8 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ)
2524rexrd 10685 . . . . . . 7 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ*)
2625adantr 483 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈ ℝ*)
27 id 22 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
286a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ)
2910eleq2d 2898 . . . . . . . 8 (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))))
3027, 28, 29eliind 41326 . . . . . . 7 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
3130adantl 484 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
32 ioogtlb 41763 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 1)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥)
332, 26, 31, 32syl3anc 1367 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥)
34 nfv 1911 . . . . . . . 8 𝑛𝜑
35 nfcv 2977 . . . . . . . . 9 𝑛𝑥
36 nfii1 4946 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3735, 36nfel 2992 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3834, 37nfan 1896 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
39 simpll 765 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
40 iinss2 4973 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
4140adantl 484 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
42 simpl 485 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
4341, 42sseldd 3967 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
4443adantll 712 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
45 simpr 487 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 elioore 12762 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
4746adantr 483 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
4847adantll 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
493adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
50 nnrecre 11673 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5150adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5249, 51readdcld 10664 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5352adantlr 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
541adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5554adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5652rexrd 10685 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
5756adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
58 simplr 767 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
59 iooltub 41779 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6055, 57, 58, 59syl3anc 1367 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6148, 53, 60ltled 10782 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6239, 44, 45, 61syl21anc 835 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6362ex 415 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6438, 63ralrimi 3216 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6538, 19, 4xrralrecnnle 41646 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6664, 65mpbird 259 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
672, 5, 19, 33, 66eliocd 41776 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵))
6867ralrimiva 3182 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
69 dfss3 3955 . . 3 ( 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
7068, 69sylibr 236 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵))
711xrleidd 12539 . . . . . 6 (𝜑𝐴𝐴)
7271adantr 483 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐴)
73 1rp 12387 . . . . . . . . 9 1 ∈ ℝ+
7473a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
75 nnrp 12394 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7674, 75rpdivcld 12442 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7776adantl 484 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7849, 77ltaddrpd 12458 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
79 iocssioo 12821 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8054, 56, 72, 78, 79syl22anc 836 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8180ralrimiva 3182 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
82 ssiin 4971 . . 3 ((𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8381, 82sylibr 236 . 2 (𝜑 → (𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
8470, 83eqssd 3983 1 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3935   ciin 4912   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670   / cdiv 11291  cn 11632  +crp 12383  (,)cioo 12732  (,]cioc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ioc 12737  df-fl 13156
This theorem is referenced by:  iocborel  42633
  Copyright terms: Public domain W3C validator