MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioomax Structured version   Visualization version   GIF version

Theorem ioomax 12803
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax (-∞(,)+∞) = ℝ

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 10690 . . 3 -∞ ∈ ℝ*
2 pnfxr 10687 . . 3 +∞ ∈ ℝ*
3 iooval2 12763 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 690 . 2 (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
5 rabid2 3380 . . 3 (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥𝑥 < +∞))
6 mnflt 12510 . . . 4 (𝑥 ∈ ℝ → -∞ < 𝑥)
7 ltpnf 12507 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
86, 7jca 514 . . 3 (𝑥 ∈ ℝ → (-∞ < 𝑥𝑥 < +∞))
95, 8mprgbir 3151 . 2 ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
104, 9eqtr4i 2845 1 (-∞(,)+∞) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1531  wcel 2108  {crab 3140   class class class wbr 5057  (class class class)co 7148  cr 10528  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  (,)cioo 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ioo 12734
This theorem is referenced by:  unirnioo  12829  resup  13227  reordt  21818  icopnfcld  23368  iocmnfcld  23369  blssioo  23395  reconnlem1  23426  ioombl1  24155  ioombl  24158  mbfdm  24219  ismbf  24221  ismbf2d  24233  ismbf3d  24247  tpr2rico  31148  esumcvgsum  31340  itgexpif  31870  retopsconn  32489  asindmre  34969  itgsubsticclem  42249
  Copyright terms: Public domain W3C validator