MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1 Structured version   Visualization version   GIF version

Theorem ioombl1 23237
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ioombl1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)

Proof of Theorem ioombl1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxr 11894 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ioossre 12177 . . . . 5 (𝐴(,)+∞) ⊆ ℝ
32a1i 11 . . . 4 (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆ ℝ)
4 elpwi 4140 . . . . . 6 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
5 simplrl 799 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑥 ⊆ ℝ)
6 simplrr 800 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → (vol*‘𝑥) ∈ ℝ)
7 simpr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
8 eqid 2621 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 23155 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
105, 6, 7, 9syl3anc 1323 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
11 eqid 2621 . . . . . . . . . . 11 (𝐴(,)+∞) = (𝐴(,)+∞)
12 simplll 797 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ)
135adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ)
146adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈ ℝ)
15 simplr 791 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+)
16 eqid 2621 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩)))
17 eqid 2621 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩)))
18 simprl 793 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
19 reex 9971 . . . . . . . . . . . . . . 15 ℝ ∈ V
2019, 19xpex 6915 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
2120inex2 4760 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ∈ V
22 nnex 10970 . . . . . . . . . . . . 13 ℕ ∈ V
2321, 22elmap 7830 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2418, 23sylib 208 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
25 simprrl 803 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ran ((,) ∘ 𝑓))
26 simprrr 804 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦))
27 eqid 2621 . . . . . . . . . . 11 (1st ‘(𝑓𝑛)) = (1st ‘(𝑓𝑛))
28 eqid 2621 . . . . . . . . . . 11 (2nd ‘(𝑓𝑛)) = (2nd ‘(𝑓𝑛))
29 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑓𝑚) = (𝑓𝑛))
3029fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
3130breq1d 4623 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓𝑛)) ≤ 𝐴))
3231, 30ifbieq2d 4083 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) = if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))))
3329fveq2d 6152 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
3432, 33breq12d 4626 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)) ↔ if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛))))
3534, 32, 33ifbieq12d 4085 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))) = if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))))
3635, 33opeq12d 4378 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3736cbvmptv 4710 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3830, 35opeq12d 4378 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩ = ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3938cbvmptv 4710 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
4011, 12, 13, 14, 15, 8, 16, 17, 24, 25, 26, 27, 28, 37, 39ioombl1lem4 23236 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
4110, 40rexlimddv 3028 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
4241ralrimiva 2960 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
43 inss1 3811 . . . . . . . . . . . 12 (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥
44 ovolsscl 23161 . . . . . . . . . . . 12 (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4543, 44mp3an1 1408 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4645adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
47 difss 3715 . . . . . . . . . . . 12 (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥
48 ovolsscl 23161 . . . . . . . . . . . 12 (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4947, 48mp3an1 1408 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
5049adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
5146, 50readdcld 10013 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ)
52 simprr 795 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
53 alrple 11980 . . . . . . . . 9 ((((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
5451, 52, 53syl2anc 692 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
5542, 54mpbird 247 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))
5655expr 642 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
574, 56sylan2 491 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
5857ralrimiva 2960 . . . 4 (𝐴 ∈ ℝ → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
59 ismbl2 23202 . . . 4 ((𝐴(,)+∞) ∈ dom vol ↔ ((𝐴(,)+∞) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))))
603, 58, 59sylanbrc 697 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom vol)
61 oveq1 6611 . . . . 5 (𝐴 = +∞ → (𝐴(,)+∞) = (+∞(,)+∞))
62 iooid 12145 . . . . 5 (+∞(,)+∞) = ∅
6361, 62syl6eq 2671 . . . 4 (𝐴 = +∞ → (𝐴(,)+∞) = ∅)
64 0mbl 23214 . . . 4 ∅ ∈ dom vol
6563, 64syl6eqel 2706 . . 3 (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom vol)
66 oveq1 6611 . . . . 5 (𝐴 = -∞ → (𝐴(,)+∞) = (-∞(,)+∞))
67 ioomax 12190 . . . . 5 (-∞(,)+∞) = ℝ
6866, 67syl6eq 2671 . . . 4 (𝐴 = -∞ → (𝐴(,)+∞) = ℝ)
69 rembl 23215 . . . 4 ℝ ∈ dom vol
7068, 69syl6eqel 2706 . . 3 (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom vol)
7160, 65, 703jaoi 1388 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom vol)
721, 71sylbi 207 1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1035   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cdif 3552  cin 3554  wss 3555  c0 3891  ifcif 4058  𝒫 cpw 4130  cop 4154   cuni 4402   class class class wbr 4613  cmpt 4673   × cxp 5072  dom cdm 5074  ran crn 5075  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  𝑚 cmap 7802  supcsup 8290  cr 9879  1c1 9881   + caddc 9883  +∞cpnf 10015  -∞cmnf 10016  *cxr 10017   < clt 10018  cle 10019  cmin 10210  cn 10964  +crp 11776  (,)cioo 12117  seqcseq 12741  abscabs 13908  vol*covol 23138  volcvol 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351  df-xmet 19658  df-met 19659  df-ovol 23140  df-vol 23141
This theorem is referenced by:  icombl1  23238
  Copyright terms: Public domain W3C validator