MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooneg Structured version   Visualization version   GIF version

Theorem iooneg 12250
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iooneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))

Proof of Theorem iooneg
StepHypRef Expression
1 ltneg 10488 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
213adant2 1078 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴))
3 ltneg 10488 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
43ancoms 469 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
543adant1 1077 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶))
62, 5anbi12d 746 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐶 < -𝐴 ∧ -𝐵 < -𝐶)))
7 ancom 466 . . 3 ((-𝐶 < -𝐴 ∧ -𝐵 < -𝐶) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))
86, 7syl6bb 276 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶𝐶 < 𝐵) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
9 rexr 10045 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
10 rexr 10045 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
11 rexr 10045 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
12 elioo5 12189 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
139, 10, 11, 12syl3an 1365 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
14 renegcl 10304 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
15 renegcl 10304 . . . 4 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
16 renegcl 10304 . . . 4 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
17 rexr 10045 . . . . 5 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
18 rexr 10045 . . . . 5 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
19 rexr 10045 . . . . 5 (-𝐶 ∈ ℝ → -𝐶 ∈ ℝ*)
20 elioo5 12189 . . . . 5 ((-𝐵 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐶 ∈ ℝ*) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2117, 18, 19, 20syl3an 1365 . . . 4 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ -𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
2214, 15, 16, 21syl3an 1365 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
23223com12 1266 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴)))
248, 13, 233bitr4d 300 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4623  (class class class)co 6615  cr 9895  *cxr 10033   < clt 10034  -cneg 10227  (,)cioo 12133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-ioo 12137
This theorem is referenced by:  lhop2  23716  asinsin  24553  atanlogsub  24577  atanbnd  24587
  Copyright terms: Public domain W3C validator