MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorf Structured version   Visualization version   GIF version

Theorem ioorf 24177
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorf 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))

Proof of Theorem ioorf
Dummy variables 𝑎 𝑏 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorf.1 . 2 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
2 ioof 12838 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6517 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4 ovelrn 7327 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏)))
52, 3, 4mp2b 10 . . 3 (𝑥 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏))
6 0le0 11741 . . . . . . . . 9 0 ≤ 0
7 df-br 5070 . . . . . . . . 9 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
86, 7mpbi 232 . . . . . . . 8 ⟨0, 0⟩ ∈ ≤
9 0xr 10691 . . . . . . . . 9 0 ∈ ℝ*
10 opelxpi 5595 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
119, 9, 10mp2an 690 . . . . . . . 8 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
128, 11elini 4173 . . . . . . 7 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*))
1312a1i 11 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ 𝑥 = ∅) → ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
14 simplr 767 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 = (𝑎(,)𝑏))
1514infeq1d 8944 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = inf((𝑎(,)𝑏), ℝ*, < ))
16 simplll 773 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 ∈ ℝ*)
17 simpllr 774 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑏 ∈ ℝ*)
18 simpr 487 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
1918neqned 3026 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
2014, 19eqnetrrd 3087 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎(,)𝑏) ≠ ∅)
21 df-ioo 12745 . . . . . . . . . . 11 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
22 idd 24 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤 < 𝑏))
23 xrltle 12545 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑤 < 𝑏𝑤𝑏))
24 idd 24 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎 < 𝑤))
25 xrltle 12545 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑎 < 𝑤𝑎𝑤))
2621, 22, 23, 24, 25ixxlb 12763 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2716, 17, 20, 26syl3anc 1367 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf((𝑎(,)𝑏), ℝ*, < ) = 𝑎)
2815, 27eqtrd 2859 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → inf(𝑥, ℝ*, < ) = 𝑎)
2914supeq1d 8913 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = sup((𝑎(,)𝑏), ℝ*, < ))
3021, 22, 23, 24, 25ixxub 12762 . . . . . . . . . 10 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ* ∧ (𝑎(,)𝑏) ≠ ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3116, 17, 20, 30syl3anc 1367 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup((𝑎(,)𝑏), ℝ*, < ) = 𝑏)
3229, 31eqtrd 2859 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → sup(𝑥, ℝ*, < ) = 𝑏)
3328, 32opeq12d 4814 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ = ⟨𝑎, 𝑏⟩)
34 ioon0 12767 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3534ad2antrr 724 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
3620, 35mpbid 234 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎 < 𝑏)
37 xrltle 12545 . . . . . . . . . . 11 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎 < 𝑏𝑎𝑏))
3837ad2antrr 724 . . . . . . . . . 10 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → (𝑎 < 𝑏𝑎𝑏))
3936, 38mpd 15 . . . . . . . . 9 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → 𝑎𝑏)
40 df-br 5070 . . . . . . . . 9 (𝑎𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ≤ )
4139, 40sylib 220 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ≤ )
42 opelxpi 5595 . . . . . . . . 9 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4342ad2antrr 724 . . . . . . . 8 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ (ℝ* × ℝ*))
4441, 43elind 4174 . . . . . . 7 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨𝑎, 𝑏⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4533, 44eqeltrd 2916 . . . . . 6 ((((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) ∧ ¬ 𝑥 = ∅) → ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩ ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4613, 45ifclda 4504 . . . . 5 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 = (𝑎(,)𝑏)) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
4746ex 415 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*))))
4847rexlimivv 3295 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑥 = (𝑎(,)𝑏) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
495, 48sylbi 219 . 2 (𝑥 ∈ ran (,) → if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩) ∈ ( ≤ ∩ (ℝ* × ℝ*)))
501, 49fmpti 6879 1 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wrex 3142  cin 3938  c0 4294  ifcif 4470  𝒫 cpw 4542  cop 4576   class class class wbr 5069  cmpt 5149   × cxp 5556  ran crn 5559   Fn wfn 6353  wf 6354  (class class class)co 7159  supcsup 8907  infcinf 8908  cr 10539  0cc0 10540  *cxr 10677   < clt 10678  cle 10679  (,)cioo 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745
This theorem is referenced by:  ioorcl  24181  uniioombllem2  24187
  Copyright terms: Public domain W3C validator