Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopn Structured version   Visualization version   GIF version

Theorem ioorrnopn 41028
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopn.x (𝜑𝑋 ∈ Fin)
ioorrnopn.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopn.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
ioorrnopn (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopn
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 5002 . . . . . 6 {∅} ∈ V
21prid2 4442 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 8085 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 8102 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2794 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 fveq2 6352 . . . . . . 7 (𝑋 = ∅ → (ℝ^‘𝑋) = (ℝ^‘∅))
98fveq2d 6356 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
10 rrxtopn0b 41019 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
1110a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
129, 11eqtrd 2794 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
137, 12eleq12d 2833 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
143, 13mpbird 247 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1514adantl 473 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
16 neqne 2940 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1716adantl 473 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
18 fveq2 6352 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
19 fveq2 6352 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
2018, 19oveq12d 6831 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2120cbvixpv 8092 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2221eleq2i 2831 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322biimpi 206 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2423adantl 473 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
25 ioorrnopn.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2625ad2antrr 764 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ∈ Fin)
2722, 26sylan2br 494 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
28 simplr 809 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ≠ ∅)
2922, 28sylan2br 494 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ≠ ∅)
30 ioorrnopn.a . . . . . . . . 9 (𝜑𝐴:𝑋⟶ℝ)
3130ad2antrr 764 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐴:𝑋⟶ℝ)
3222, 31sylan2br 494 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ)
33 ioorrnopn.b . . . . . . . . 9 (𝜑𝐵:𝑋⟶ℝ)
3433ad2antrr 764 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐵:𝑋⟶ℝ)
3522, 34sylan2br 494 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ)
36 simpr 479 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3722, 36sylan2br 494 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
38 eqid 2760 . . . . . . 7 ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
39 fveq2 6352 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
40 fveq2 6352 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
4139, 40oveq12d 6831 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐵𝑗) − (𝑓𝑗)) = ((𝐵𝑖) − (𝑓𝑖)))
42 fveq2 6352 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
4340, 42oveq12d 6831 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑓𝑗) − (𝐴𝑗)) = ((𝑓𝑖) − (𝐴𝑖)))
4441, 43breq12d 4817 . . . . . . . . . . 11 (𝑗 = 𝑖 → (((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)) ↔ ((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖))))
4544, 41, 43ifbieq12d 4257 . . . . . . . . . 10 (𝑗 = 𝑖 → if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗))) = if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4645cbvmptv 4902 . . . . . . . . 9 (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4746rneqi 5507 . . . . . . . 8 ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4847infeq1i 8549 . . . . . . 7 inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ) = inf(ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))), ℝ, < )
49 eqid 2760 . . . . . . 7 (𝑓(ball‘(𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ))
50 fveq1 6351 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (𝑎𝑘) = (𝑔𝑘))
5150oveq1d 6828 . . . . . . . . . . 11 (𝑎 = 𝑔 → ((𝑎𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑏𝑘)))
5251oveq1d 6828 . . . . . . . . . 10 (𝑎 = 𝑔 → (((𝑎𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑏𝑘))↑2))
5352sumeq2ad 14633 . . . . . . . . 9 (𝑎 = 𝑔 → Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2))
5453fveq2d 6356 . . . . . . . 8 (𝑎 = 𝑔 → (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)))
55 fveq1 6351 . . . . . . . . . . . 12 (𝑏 = → (𝑏𝑘) = (𝑘))
5655oveq2d 6829 . . . . . . . . . . 11 (𝑏 = → ((𝑔𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑘)))
5756oveq1d 6828 . . . . . . . . . 10 (𝑏 = → (((𝑔𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑘))↑2))
5857sumeq2ad 14633 . . . . . . . . 9 (𝑏 = → Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2))
5958fveq2d 6356 . . . . . . . 8 (𝑏 = → (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6054, 59cbvmpt2v 6900 . . . . . . 7 (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6127, 29, 32, 35, 37, 38, 48, 49, 60ioorrnopnlem 41027 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6224, 61syldan 488 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6362ralrimiva 3104 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
64 eqid 2760 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
6564rrxtop 41012 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6625, 65syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6766adantr 472 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
68 eltop2 20981 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6967, 68syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
7063, 69mpbird 247 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7117, 70syldan 488 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7215, 71pm2.61dan 867 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058  ifcif 4230  {csn 4321  {cpr 4323   class class class wbr 4804  cmpt 4881  ran crn 5267  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  𝑚 cmap 8023  Xcixp 8074  Fincfn 8121  infcinf 8512  cr 10127   < clt 10266  cle 10267  cmin 10458  2c2 11262  (,)cioo 12368  cexp 13054  csqrt 14172  Σcsu 14615  TopOpenctopn 16284  ballcbl 19935  Topctop 20900  ℝ^crrx 23371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-prds 16310  df-pws 16312  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-field 18952  df-subrg 18980  df-abv 19019  df-staf 19047  df-srng 19048  df-lmod 19067  df-lss 19135  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-refld 20153  df-phl 20173  df-dsmm 20278  df-frlm 20293  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589  df-tng 22590  df-nrg 22591  df-nlm 22592  df-clm 23063  df-cph 23168  df-tch 23169  df-rrx 23373
This theorem is referenced by:  ioorrnopnxrlem  41029
  Copyright terms: Public domain W3C validator