Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopn Structured version   Visualization version   GIF version

Theorem ioorrnopn 39832
Description: The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopn.x (𝜑𝑋 ∈ Fin)
ioorrnopn.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopn.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
ioorrnopn (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem ioorrnopn
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4813 . . . . . 6 {∅} ∈ V
21prid2 4268 . . . . 5 {∅} ∈ {∅, {∅}}
32a1i 11 . . . 4 (𝑋 = ∅ → {∅} ∈ {∅, {∅}})
4 ixpeq1 7863 . . . . . 6 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)))
5 ixp0x 7880 . . . . . . 7 X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅}
65a1i 11 . . . . . 6 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
74, 6eqtrd 2655 . . . . 5 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = {∅})
8 fveq2 6148 . . . . . . 7 (𝑋 = ∅ → (ℝ^‘𝑋) = (ℝ^‘∅))
98fveq2d 6152 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘∅)))
10 rrxtopn0b 39823 . . . . . . 7 (TopOpen‘(ℝ^‘∅)) = {∅, {∅}}
1110a1i 11 . . . . . 6 (𝑋 = ∅ → (TopOpen‘(ℝ^‘∅)) = {∅, {∅}})
129, 11eqtrd 2655 . . . . 5 (𝑋 = ∅ → (TopOpen‘(ℝ^‘𝑋)) = {∅, {∅}})
137, 12eleq12d 2692 . . . 4 (𝑋 = ∅ → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ {∅} ∈ {∅, {∅}}))
143, 13mpbird 247 . . 3 (𝑋 = ∅ → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
1514adantl 482 . 2 ((𝜑𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
16 neqne 2798 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1716adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
18 fveq2 6148 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
19 fveq2 6148 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
2018, 19oveq12d 6622 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐴𝑖)(,)(𝐵𝑖)) = ((𝐴𝑗)(,)(𝐵𝑗)))
2120cbvixpv 7870 . . . . . . . . 9 X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) = X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))
2221eleq2i 2690 . . . . . . . 8 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2322biimpi 206 . . . . . . 7 (𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
2423adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗)))
25 ioorrnopn.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2625ad2antrr 761 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ∈ Fin)
2722, 26sylan2br 493 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ∈ Fin)
28 simplr 791 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑋 ≠ ∅)
2922, 28sylan2br 493 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑋 ≠ ∅)
30 ioorrnopn.a . . . . . . . . 9 (𝜑𝐴:𝑋⟶ℝ)
3130ad2antrr 761 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐴:𝑋⟶ℝ)
3222, 31sylan2br 493 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐴:𝑋⟶ℝ)
33 ioorrnopn.b . . . . . . . . 9 (𝜑𝐵:𝑋⟶ℝ)
3433ad2antrr 761 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝐵:𝑋⟶ℝ)
3522, 34sylan2br 493 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝐵:𝑋⟶ℝ)
36 simpr 477 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
3722, 36sylan2br 493 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
38 eqid 2621 . . . . . . 7 ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
39 fveq2 6148 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐵𝑗) = (𝐵𝑖))
40 fveq2 6148 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑓𝑗) = (𝑓𝑖))
4139, 40oveq12d 6622 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝐵𝑗) − (𝑓𝑗)) = ((𝐵𝑖) − (𝑓𝑖)))
42 fveq2 6148 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝐴𝑗) = (𝐴𝑖))
4340, 42oveq12d 6622 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑓𝑗) − (𝐴𝑗)) = ((𝑓𝑖) − (𝐴𝑖)))
4441, 43breq12d 4626 . . . . . . . . . . 11 (𝑗 = 𝑖 → (((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)) ↔ ((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖))))
4544, 41, 43ifbieq12d 4085 . . . . . . . . . 10 (𝑗 = 𝑖 → if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗))) = if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4645cbvmptv 4710 . . . . . . . . 9 (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4746rneqi 5312 . . . . . . . 8 ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))) = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖))))
4847infeq1i 8328 . . . . . . 7 inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ) = inf(ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝑓𝑖)) ≤ ((𝑓𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝑓𝑖)), ((𝑓𝑖) − (𝐴𝑖)))), ℝ, < )
49 eqid 2621 . . . . . . 7 (𝑓(ball‘(𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < )) = (𝑓(ball‘(𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))))inf(ran (𝑗𝑋 ↦ if(((𝐵𝑗) − (𝑓𝑗)) ≤ ((𝑓𝑗) − (𝐴𝑗)), ((𝐵𝑗) − (𝑓𝑗)), ((𝑓𝑗) − (𝐴𝑗)))), ℝ, < ))
50 fveq1 6147 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (𝑎𝑘) = (𝑔𝑘))
5150oveq1d 6619 . . . . . . . . . . 11 (𝑎 = 𝑔 → ((𝑎𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑏𝑘)))
5251oveq1d 6619 . . . . . . . . . 10 (𝑎 = 𝑔 → (((𝑎𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑏𝑘))↑2))
5352sumeq2ad 39201 . . . . . . . . 9 (𝑎 = 𝑔 → Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2))
5453fveq2d 6152 . . . . . . . 8 (𝑎 = 𝑔 → (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)))
55 fveq1 6147 . . . . . . . . . . . 12 (𝑏 = → (𝑏𝑘) = (𝑘))
5655oveq2d 6620 . . . . . . . . . . 11 (𝑏 = → ((𝑔𝑘) − (𝑏𝑘)) = ((𝑔𝑘) − (𝑘)))
5756oveq1d 6619 . . . . . . . . . 10 (𝑏 = → (((𝑔𝑘) − (𝑏𝑘))↑2) = (((𝑔𝑘) − (𝑘))↑2))
5857sumeq2ad 39201 . . . . . . . . 9 (𝑏 = → Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2) = Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2))
5958fveq2d 6152 . . . . . . . 8 (𝑏 = → (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑏𝑘))↑2)) = (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6054, 59cbvmpt2v 6688 . . . . . . 7 (𝑎 ∈ (ℝ ↑𝑚 𝑋), 𝑏 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑎𝑘) − (𝑏𝑘))↑2))) = (𝑔 ∈ (ℝ ↑𝑚 𝑋), ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑔𝑘) − (𝑘))↑2)))
6127, 29, 32, 35, 37, 38, 48, 49, 60ioorrnopnlem 39831 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑗𝑋 ((𝐴𝑗)(,)(𝐵𝑗))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6224, 61syldan 487 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑓X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
6362ralrimiva 2960 . . . 4 ((𝜑𝑋 ≠ ∅) → ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
64 eqid 2621 . . . . . . . 8 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
6564rrxtop 39816 . . . . . . 7 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6625, 65syl 17 . . . . . 6 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
6766adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → (TopOpen‘(ℝ^‘𝑋)) ∈ Top)
68 eltop2 20690 . . . . 5 ((TopOpen‘(ℝ^‘𝑋)) ∈ Top → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
6967, 68syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → (X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ ∀𝑓X 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝑓𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
7063, 69mpbird 247 . . 3 ((𝜑𝑋 ≠ ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7117, 70syldan 487 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
7215, 71pm2.61dan 831 1 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555  c0 3891  ifcif 4058  {csn 4148  {cpr 4150   class class class wbr 4613  cmpt 4673  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802  Xcixp 7852  Fincfn 7899  infcinf 8291  cr 9879   < clt 10018  cle 10019  cmin 10210  2c2 11014  (,)cioo 12117  cexp 12800  csqrt 13907  Σcsu 14350  TopOpenctopn 16003  ballcbl 19652  Topctop 20617  ℝ^crrx 23079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-field 18671  df-subrg 18699  df-abv 18738  df-staf 18766  df-srng 18767  df-lmod 18786  df-lss 18852  df-lmhm 18941  df-lvec 19022  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-refld 19870  df-phl 19890  df-dsmm 19995  df-frlm 20010  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-tng 22299  df-nrg 22300  df-nlm 22301  df-clm 22771  df-cph 22876  df-tch 22877  df-rrx 23081
This theorem is referenced by:  ioorrnopnxrlem  39833
  Copyright terms: Public domain W3C validator