Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnlem Structured version   Visualization version   GIF version

Theorem ioorrnopnlem 39831
 Description: The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnlem.n (𝜑𝑋 ≠ ∅)
ioorrnopnlem.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopnlem.b (𝜑𝐵:𝑋⟶ℝ)
ioorrnopnlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnlem.h 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
ioorrnopnlem.e 𝐸 = inf(𝐻, ℝ, < )
ioorrnopnlem.v 𝑉 = (𝐹(ball‘𝐷)𝐸)
ioorrnopnlem.d 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
ioorrnopnlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝐴,𝑔   𝑣,𝐴   𝐵,𝑔   𝑣,𝐵   𝐷,𝑔,𝑖   𝑔,𝐸,𝑖   𝑔,𝐹,𝑖   𝑣,𝐹,𝑖   𝑣,𝑉   𝑓,𝑋,𝑔,𝑘   𝑖,𝑋,𝑣   𝜑,𝑓,𝑔,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑓,𝑖,𝑘)   𝐵(𝑓,𝑖,𝑘)   𝐷(𝑣,𝑓,𝑘)   𝐸(𝑣,𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐻(𝑣,𝑓,𝑔,𝑖,𝑘)   𝑉(𝑓,𝑔,𝑖,𝑘)

Proof of Theorem ioorrnopnlem
StepHypRef Expression
1 ioorrnopnlem.x . . . . 5 (𝜑𝑋 ∈ Fin)
2 ioorrnopnlem.d . . . . 5 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsxmet 39830 . . . 4 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
4 nfv 1840 . . . . . 6 𝑖𝜑
5 reex 9971 . . . . . . 7 ℝ ∈ V
65a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
7 ioossre 12177 . . . . . . 7 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ
87a1i 11 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
94, 6, 8ixpssmapc 38728 . . . . 5 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
10 ioorrnopnlem.f . . . . 5 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
119, 10sseldd 3584 . . . 4 (𝜑𝐹 ∈ (ℝ ↑𝑚 𝑋))
12 ioorrnopnlem.e . . . . . 6 𝐸 = inf(𝐻, ℝ, < )
13 ioorrnopnlem.h . . . . . . . . 9 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
1413a1i 11 . . . . . . . 8 (𝜑𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
15 ioorrnopnlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ)
1615ffvelrnda 6315 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
1710adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
18 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝑖𝑋)
19 fvixp2 38863 . . . . . . . . . . . . . . 15 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
2017, 18, 19syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
217, 20sseldi 3581 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
2216, 21resubcld 10402 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ)
23 ioorrnopnlem.a . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝑋⟶ℝ)
2423ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
2524rexrd 10033 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2616rexrd 10033 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
27 iooltub 39146 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
2825, 26, 20, 27syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
2921, 16posdifd 10558 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐹𝑖) < (𝐵𝑖) ↔ 0 < ((𝐵𝑖) − (𝐹𝑖))))
3028, 29mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐵𝑖) − (𝐹𝑖)))
3122, 30elrpd 11813 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ+)
3221, 24resubcld 10402 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ)
33 ioogtlb 39128 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3425, 26, 20, 33syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3524, 21posdifd 10558 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐴𝑖) < (𝐹𝑖) ↔ 0 < ((𝐹𝑖) − (𝐴𝑖))))
3634, 35mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐹𝑖) − (𝐴𝑖)))
3732, 36elrpd 11813 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ+)
3831, 37ifcld 4103 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
3938ralrimiva 2960 . . . . . . . . 9 (𝜑 → ∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
40 eqid 2621 . . . . . . . . . 10 (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
4140rnmptss 6347 . . . . . . . . 9 (∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+ → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4239, 41syl 17 . . . . . . . 8 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4314, 42eqsstrd 3618 . . . . . . 7 (𝜑𝐻 ⊆ ℝ+)
44 ltso 10062 . . . . . . . . 9 < Or ℝ
4544a1i 11 . . . . . . . 8 (𝜑 → < Or ℝ)
4640rnmptfi 38825 . . . . . . . . . 10 (𝑋 ∈ Fin → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
471, 46syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
4813, 47syl5eqel 2702 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
4938elexd 3200 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V)
50 ioorrnopnlem.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
514, 49, 40, 50rnmptn0 38887 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ≠ ∅)
5214, 51eqnetrd 2857 . . . . . . . 8 (𝜑𝐻 ≠ ∅)
53 rpssre 11787 . . . . . . . . . 10 + ⊆ ℝ
5453a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℝ)
5543, 54sstrd 3593 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
56 fiinfcl 8351 . . . . . . . 8 (( < Or ℝ ∧ (𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ)) → inf(𝐻, ℝ, < ) ∈ 𝐻)
5745, 48, 52, 55, 56syl13anc 1325 . . . . . . 7 (𝜑 → inf(𝐻, ℝ, < ) ∈ 𝐻)
5843, 57sseldd 3584 . . . . . 6 (𝜑 → inf(𝐻, ℝ, < ) ∈ ℝ+)
5912, 58syl5eqel 2702 . . . . 5 (𝜑𝐸 ∈ ℝ+)
60 rpxr 11784 . . . . 5 (𝐸 ∈ ℝ+𝐸 ∈ ℝ*)
6159, 60syl 17 . . . 4 (𝜑𝐸 ∈ ℝ*)
62 eqid 2621 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
6362blopn 22215 . . . 4 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ*) → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
643, 11, 61, 63syl3anc 1323 . . 3 (𝜑 → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
65 ioorrnopnlem.v . . . . 5 𝑉 = (𝐹(ball‘𝐷)𝐸)
6665a1i 11 . . . 4 (𝜑𝑉 = (𝐹(ball‘𝐷)𝐸))
671rrxtopnfi 39813 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
682eqcomi 2630 . . . . . . 7 (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷
6968a1i 11 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
7069fveq2d 6152 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
7167, 70eqtrd 2655 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘𝐷))
7266, 71eleq12d 2692 . . 3 (𝜑 → (𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷)))
7364, 72mpbird 247 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
74 xmetpsmet 22063 . . . . . 6 (𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) → 𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
753, 74syl 17 . . . . 5 (𝜑𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
76 blcntrps 22127 . . . . 5 ((𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ+) → 𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7775, 11, 59, 76syl3anc 1323 . . . 4 (𝜑𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7866eqcomd 2627 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) = 𝑉)
7977, 78eleqtrd 2700 . . 3 (𝜑𝐹𝑉)
80 nfv 1840 . . . . 5 𝑔𝜑
81 elmapfn 7824 . . . . . . . 8 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔 Fn 𝑋)
82813ad2ant2 1081 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔 Fn 𝑋)
83253ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
84263ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
85 simpl2 1063 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
86 simpr 477 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑖𝑋)
87 elmapi 7823 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔:𝑋⟶ℝ)
8887adantr 481 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
89 simpr 477 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
9088, 89ffvelrnd 6316 . . . . . . . . . 10 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
9185, 86, 90syl2anc 692 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
92243ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
9353, 59sseldi 3581 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
9493adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ∈ ℝ)
9521, 94resubcld 10402 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
96953ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
9753, 38sseldi 3581 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ)
9812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = inf(𝐻, ℝ, < ))
99 infxrrefi 39065 . . . . . . . . . . . . . . . . . 18 ((𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅) → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
10055, 48, 52, 99syl3anc 1323 . . . . . . . . . . . . . . . . 17 (𝜑 → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
101100eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝜑 → inf(𝐻, ℝ, < ) = inf(𝐻, ℝ*, < ))
10298, 101eqtrd 2655 . . . . . . . . . . . . . . 15 (𝜑𝐸 = inf(𝐻, ℝ*, < ))
103102adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → 𝐸 = inf(𝐻, ℝ*, < ))
104 ressxr 10027 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
105104a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℝ*)
10655, 105sstrd 3593 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ⊆ ℝ*)
107106adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐻 ⊆ ℝ*)
10840elrnmpt1 5334 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
10918, 49, 108syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
110109, 13syl6eleqr 2709 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻)
111 infxrlb 12107 . . . . . . . . . . . . . . 15 ((𝐻 ⊆ ℝ* ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
112107, 110, 111syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
113103, 112eqbrtrd 4635 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐸 ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
114 min2 11964 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11522, 32, 114syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11694, 97, 32, 113, 115letrd 10138 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐹𝑖) − (𝐴𝑖)))
11794, 21, 24, 116lesubd 10575 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
1181173ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
11921adantlr 750 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12090adantll 749 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
121119, 120resubcld 10402 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1221213adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1231, 2rrndsmet 39829 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
124123ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
12511ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹 ∈ (ℝ ↑𝑚 𝑋))
126 simplr 791 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
127 metcl 22047 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝑋)) → (𝐹𝐷𝑔) ∈ ℝ)
128124, 125, 126, 127syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
1291283adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
13094adantlr 750 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
1311303adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
132121recnd 10012 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℂ)
133132abscld 14109 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ∈ ℝ)
134121leabsd 14087 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
1351ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑋 ∈ Fin)
136 ixpf 7874 . . . . . . . . . . . . . . . . . . 19 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
13710, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1388ralrimiva 2960 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
139 iunss 4527 . . . . . . . . . . . . . . . . . . 19 ( 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ ↔ ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
140138, 139sylibr 224 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
141137, 140fssd 6014 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℝ)
142141ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹:𝑋⟶ℝ)
143126, 87syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
144 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑖𝑋)
145 eqid 2621 . . . . . . . . . . . . . . . 16 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
146135, 142, 143, 144, 145rrnprjdstle 39828 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹(dist‘(ℝ^‘𝑋))𝑔))
147 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (ℝ^‘𝑋) = (ℝ^‘𝑋)
148 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 𝑋)
149147, 148rrxdsfi 39812 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1501, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151150, 69eqtrd 2655 . . . . . . . . . . . . . . . . 17 (𝜑 → (dist‘(ℝ^‘𝑋)) = 𝐷)
152151oveqd 6621 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
153152ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
154146, 153breqtrd 4639 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹𝐷𝑔))
155121, 133, 128, 134, 154letrd 10138 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
1561553adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
157 simpl3 1064 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) < 𝐸)
158122, 129, 131, 156, 157lelttrd 10139 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) < 𝐸)
159 ltsub23 10452 . . . . . . . . . . . . 13 (((𝐹𝑖) ∈ ℝ ∧ (𝑔𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
160119, 120, 130, 159syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
1611603adantl3 1217 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
162158, 161mpbid 222 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) < (𝑔𝑖))
16392, 96, 91, 118, 162lelttrd 10139 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) < (𝑔𝑖))
16421, 94readdcld 10013 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
1651643ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
166163ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
167120, 119resubcld 10402 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
1681673adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
169167leabsd 14087 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝑔𝑖) − (𝐹𝑖))))
170120recnd 10012 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℂ)
171119recnd 10012 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℂ)
172170, 171abssubd 14126 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝑔𝑖) − (𝐹𝑖))) = (abs‘((𝐹𝑖) − (𝑔𝑖))))
173169, 172breqtrd 4639 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
174167, 133, 128, 173, 154letrd 10138 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
1751743adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
176168, 129, 131, 175, 157lelttrd 10139 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) < 𝐸)
1771193adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
17891, 177, 131ltsubadd2d 10569 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝑔𝑖) − (𝐹𝑖)) < 𝐸 ↔ (𝑔𝑖) < ((𝐹𝑖) + 𝐸)))
179176, 178mpbid 222 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < ((𝐹𝑖) + 𝐸))
180 min1 11963 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18122, 32, 180syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18294, 97, 22, 113, 181letrd 10138 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖)))
18321, 94, 16leaddsub2d 10573 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖) ↔ 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖))))
184182, 183mpbird 247 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
1851843ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
18691, 165, 166, 179, 185ltletrd 10141 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < (𝐵𝑖))
18783, 84, 91, 163, 186eliood 39131 . . . . . . . 8 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
188187ralrimiva 2960 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
18982, 188jca 554 . . . . . 6 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
190 vex 3189 . . . . . . 7 𝑔 ∈ V
191190elixp 7859 . . . . . 6 (𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
192189, 191sylibr 224 . . . . 5 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19380, 75, 11, 61, 192ballss3 38755 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19466, 193eqsstrd 3618 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19579, 194jca 554 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
196 eleq2 2687 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
197 sseq1 3605 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
198196, 197anbi12d 746 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
199198rspcev 3295 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
20073, 195, 199syl2anc 692 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  Vcvv 3186   ⊆ wss 3555  ∅c0 3891  ifcif 4058  ∪ ciun 4485   class class class wbr 4613   ↦ cmpt 4673   Or wor 4994  ran crn 5075   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604   ↦ cmpt2 6606   ↑𝑚 cmap 7802  Xcixp 7852  Fincfn 7899  infcinf 8291  ℝcr 9879  0cc0 9880   + caddc 9883  ℝ*cxr 10017   < clt 10018   ≤ cle 10019   − cmin 10210  2c2 11014  ℝ+crp 11776  (,)cioo 12117  ↑cexp 12800  √csqrt 13907  abscabs 13908  Σcsu 14350  distcds 15871  TopOpenctopn 16003  PsMetcpsmet 19649  ∞Metcxmt 19650  Metcme 19651  ballcbl 19652  MetOpencmopn 19655  ℝ^crrx 23079 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-field 18671  df-subrg 18699  df-staf 18766  df-srng 18767  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-refld 19870  df-dsmm 19995  df-frlm 20010  df-top 20621  df-bases 20622  df-topon 20623  df-nm 22297  df-tng 22299  df-tch 22877  df-rrx 23081 This theorem is referenced by:  ioorrnopn  39832
 Copyright terms: Public domain W3C validator