Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnlem Structured version   Visualization version   GIF version

Theorem ioorrnopnlem 39831
Description: The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnlem.n (𝜑𝑋 ≠ ∅)
ioorrnopnlem.a (𝜑𝐴:𝑋⟶ℝ)
ioorrnopnlem.b (𝜑𝐵:𝑋⟶ℝ)
ioorrnopnlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnlem.h 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
ioorrnopnlem.e 𝐸 = inf(𝐻, ℝ, < )
ioorrnopnlem.v 𝑉 = (𝐹(ball‘𝐷)𝐸)
ioorrnopnlem.d 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
Assertion
Ref Expression
ioorrnopnlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝐴,𝑔   𝑣,𝐴   𝐵,𝑔   𝑣,𝐵   𝐷,𝑔,𝑖   𝑔,𝐸,𝑖   𝑔,𝐹,𝑖   𝑣,𝐹,𝑖   𝑣,𝑉   𝑓,𝑋,𝑔,𝑘   𝑖,𝑋,𝑣   𝜑,𝑓,𝑔,𝑘   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑓,𝑖,𝑘)   𝐵(𝑓,𝑖,𝑘)   𝐷(𝑣,𝑓,𝑘)   𝐸(𝑣,𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐻(𝑣,𝑓,𝑔,𝑖,𝑘)   𝑉(𝑓,𝑔,𝑖,𝑘)

Proof of Theorem ioorrnopnlem
StepHypRef Expression
1 ioorrnopnlem.x . . . . 5 (𝜑𝑋 ∈ Fin)
2 ioorrnopnlem.d . . . . 5 𝐷 = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))
31, 2rrndsxmet 39830 . . . 4 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
4 nfv 1840 . . . . . 6 𝑖𝜑
5 reex 9971 . . . . . . 7 ℝ ∈ V
65a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
7 ioossre 12177 . . . . . . 7 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ
87a1i 11 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
94, 6, 8ixpssmapc 38728 . . . . 5 (𝜑X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ (ℝ ↑𝑚 𝑋))
10 ioorrnopnlem.f . . . . 5 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
119, 10sseldd 3584 . . . 4 (𝜑𝐹 ∈ (ℝ ↑𝑚 𝑋))
12 ioorrnopnlem.e . . . . . 6 𝐸 = inf(𝐻, ℝ, < )
13 ioorrnopnlem.h . . . . . . . . 9 𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
1413a1i 11 . . . . . . . 8 (𝜑𝐻 = ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
15 ioorrnopnlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ)
1615ffvelrnda 6315 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
1710adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
18 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝑖𝑋)
19 fvixp2 38863 . . . . . . . . . . . . . . 15 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
2017, 18, 19syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
217, 20sseldi 3581 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
2216, 21resubcld 10402 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ)
23 ioorrnopnlem.a . . . . . . . . . . . . . . . 16 (𝜑𝐴:𝑋⟶ℝ)
2423ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
2524rexrd 10033 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2616rexrd 10033 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
27 iooltub 39146 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
2825, 26, 20, 27syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
2921, 16posdifd 10558 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐹𝑖) < (𝐵𝑖) ↔ 0 < ((𝐵𝑖) − (𝐹𝑖))))
3028, 29mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐵𝑖) − (𝐹𝑖)))
3122, 30elrpd 11813 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ+)
3221, 24resubcld 10402 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ)
33 ioogtlb 39128 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3425, 26, 20, 33syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3524, 21posdifd 10558 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐴𝑖) < (𝐹𝑖) ↔ 0 < ((𝐹𝑖) − (𝐴𝑖))))
3634, 35mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 0 < ((𝐹𝑖) − (𝐴𝑖)))
3732, 36elrpd 11813 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ+)
3831, 37ifcld 4103 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
3938ralrimiva 2960 . . . . . . . . 9 (𝜑 → ∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+)
40 eqid 2621 . . . . . . . . . 10 (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) = (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
4140rnmptss 6347 . . . . . . . . 9 (∀𝑖𝑋 if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ+ → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4239, 41syl 17 . . . . . . . 8 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ⊆ ℝ+)
4314, 42eqsstrd 3618 . . . . . . 7 (𝜑𝐻 ⊆ ℝ+)
44 ltso 10062 . . . . . . . . 9 < Or ℝ
4544a1i 11 . . . . . . . 8 (𝜑 → < Or ℝ)
4640rnmptfi 38825 . . . . . . . . . 10 (𝑋 ∈ Fin → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
471, 46syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ∈ Fin)
4813, 47syl5eqel 2702 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
4938elexd 3200 . . . . . . . . . 10 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V)
50 ioorrnopnlem.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
514, 49, 40, 50rnmptn0 38887 . . . . . . . . 9 (𝜑 → ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))) ≠ ∅)
5214, 51eqnetrd 2857 . . . . . . . 8 (𝜑𝐻 ≠ ∅)
53 rpssre 11787 . . . . . . . . . 10 + ⊆ ℝ
5453a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℝ)
5543, 54sstrd 3593 . . . . . . . 8 (𝜑𝐻 ⊆ ℝ)
56 fiinfcl 8351 . . . . . . . 8 (( < Or ℝ ∧ (𝐻 ∈ Fin ∧ 𝐻 ≠ ∅ ∧ 𝐻 ⊆ ℝ)) → inf(𝐻, ℝ, < ) ∈ 𝐻)
5745, 48, 52, 55, 56syl13anc 1325 . . . . . . 7 (𝜑 → inf(𝐻, ℝ, < ) ∈ 𝐻)
5843, 57sseldd 3584 . . . . . 6 (𝜑 → inf(𝐻, ℝ, < ) ∈ ℝ+)
5912, 58syl5eqel 2702 . . . . 5 (𝜑𝐸 ∈ ℝ+)
60 rpxr 11784 . . . . 5 (𝐸 ∈ ℝ+𝐸 ∈ ℝ*)
6159, 60syl 17 . . . 4 (𝜑𝐸 ∈ ℝ*)
62 eqid 2621 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
6362blopn 22215 . . . 4 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ*) → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
643, 11, 61, 63syl3anc 1323 . . 3 (𝜑 → (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷))
65 ioorrnopnlem.v . . . . 5 𝑉 = (𝐹(ball‘𝐷)𝐸)
6665a1i 11 . . . 4 (𝜑𝑉 = (𝐹(ball‘𝐷)𝐸))
671rrxtopnfi 39813 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
682eqcomi 2630 . . . . . . 7 (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷
6968a1i 11 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
7069fveq2d 6152 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
7167, 70eqtrd 2655 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘𝐷))
7266, 71eleq12d 2692 . . 3 (𝜑 → (𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ↔ (𝐹(ball‘𝐷)𝐸) ∈ (MetOpen‘𝐷)))
7364, 72mpbird 247 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
74 xmetpsmet 22063 . . . . . 6 (𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) → 𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
753, 74syl 17 . . . . 5 (𝜑𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)))
76 blcntrps 22127 . . . . 5 ((𝐷 ∈ (PsMet‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝐸 ∈ ℝ+) → 𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7775, 11, 59, 76syl3anc 1323 . . . 4 (𝜑𝐹 ∈ (𝐹(ball‘𝐷)𝐸))
7866eqcomd 2627 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) = 𝑉)
7977, 78eleqtrd 2700 . . 3 (𝜑𝐹𝑉)
80 nfv 1840 . . . . 5 𝑔𝜑
81 elmapfn 7824 . . . . . . . 8 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔 Fn 𝑋)
82813ad2ant2 1081 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔 Fn 𝑋)
83253ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
84263ad2antl1 1221 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
85 simpl2 1063 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
86 simpr 477 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝑖𝑋)
87 elmapi 7823 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑𝑚 𝑋) → 𝑔:𝑋⟶ℝ)
8887adantr 481 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
89 simpr 477 . . . . . . . . . . 11 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → 𝑖𝑋)
9088, 89ffvelrnd 6316 . . . . . . . . . 10 ((𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
9185, 86, 90syl2anc 692 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
92243ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
9353, 59sseldi 3581 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
9493adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ∈ ℝ)
9521, 94resubcld 10402 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
96953ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) ∈ ℝ)
9753, 38sseldi 3581 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ℝ)
9812a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = inf(𝐻, ℝ, < ))
99 infxrrefi 39065 . . . . . . . . . . . . . . . . . 18 ((𝐻 ⊆ ℝ ∧ 𝐻 ∈ Fin ∧ 𝐻 ≠ ∅) → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
10055, 48, 52, 99syl3anc 1323 . . . . . . . . . . . . . . . . 17 (𝜑 → inf(𝐻, ℝ*, < ) = inf(𝐻, ℝ, < ))
101100eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝜑 → inf(𝐻, ℝ, < ) = inf(𝐻, ℝ*, < ))
10298, 101eqtrd 2655 . . . . . . . . . . . . . . 15 (𝜑𝐸 = inf(𝐻, ℝ*, < ))
103102adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → 𝐸 = inf(𝐻, ℝ*, < ))
104 ressxr 10027 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
105104a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ⊆ ℝ*)
10655, 105sstrd 3593 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ⊆ ℝ*)
107106adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐻 ⊆ ℝ*)
10840elrnmpt1 5334 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ V) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
10918, 49, 108syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ ran (𝑖𝑋 ↦ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖)))))
110109, 13syl6eleqr 2709 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻)
111 infxrlb 12107 . . . . . . . . . . . . . . 15 ((𝐻 ⊆ ℝ* ∧ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ∈ 𝐻) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
112107, 110, 111syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → inf(𝐻, ℝ*, < ) ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
113103, 112eqbrtrd 4635 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐸 ≤ if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))))
114 min2 11964 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11522, 32, 114syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐹𝑖) − (𝐴𝑖)))
11694, 97, 32, 113, 115letrd 10138 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐹𝑖) − (𝐴𝑖)))
11794, 21, 24, 116lesubd 10575 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
1181173ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ ((𝐹𝑖) − 𝐸))
11921adantlr 750 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12090adantll 749 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℝ)
121119, 120resubcld 10402 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1221213adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℝ)
1231, 2rrndsmet 39829 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
124123ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)))
12511ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹 ∈ (ℝ ↑𝑚 𝑋))
126 simplr 791 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔 ∈ (ℝ ↑𝑚 𝑋))
127 metcl 22047 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐹 ∈ (ℝ ↑𝑚 𝑋) ∧ 𝑔 ∈ (ℝ ↑𝑚 𝑋)) → (𝐹𝐷𝑔) ∈ ℝ)
128124, 125, 126, 127syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
1291283adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) ∈ ℝ)
13094adantlr 750 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
1311303adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → 𝐸 ∈ ℝ)
132121recnd 10012 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ∈ ℂ)
133132abscld 14109 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ∈ ℝ)
134121leabsd 14087 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
1351ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑋 ∈ Fin)
136 ixpf 7874 . . . . . . . . . . . . . . . . . . 19 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
13710, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝑋 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1388ralrimiva 2960 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
139 iunss 4527 . . . . . . . . . . . . . . . . . . 19 ( 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ ↔ ∀𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
140138, 139sylibr 224 . . . . . . . . . . . . . . . . . 18 (𝜑 𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ⊆ ℝ)
141137, 140fssd 6014 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑋⟶ℝ)
142141ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝐹:𝑋⟶ℝ)
143126, 87syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑔:𝑋⟶ℝ)
144 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → 𝑖𝑋)
145 eqid 2621 . . . . . . . . . . . . . . . 16 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
146135, 142, 143, 144, 145rrnprjdstle 39828 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹(dist‘(ℝ^‘𝑋))𝑔))
147 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (ℝ^‘𝑋) = (ℝ^‘𝑋)
148 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 𝑋)
149147, 148rrxdsfi 39812 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1501, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑓 ∈ (ℝ ↑𝑚 𝑋), 𝑔 ∈ (ℝ ↑𝑚 𝑋) ↦ (√‘Σ𝑘𝑋 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151150, 69eqtrd 2655 . . . . . . . . . . . . . . . . 17 (𝜑 → (dist‘(ℝ^‘𝑋)) = 𝐷)
152151oveqd 6621 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
153152ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹(dist‘(ℝ^‘𝑋))𝑔) = (𝐹𝐷𝑔))
154146, 153breqtrd 4639 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝐹𝑖) − (𝑔𝑖))) ≤ (𝐹𝐷𝑔))
155121, 133, 128, 134, 154letrd 10138 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
1561553adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) ≤ (𝐹𝐷𝑔))
157 simpl3 1064 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝐷𝑔) < 𝐸)
158122, 129, 131, 156, 157lelttrd 10139 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − (𝑔𝑖)) < 𝐸)
159 ltsub23 10452 . . . . . . . . . . . . 13 (((𝐹𝑖) ∈ ℝ ∧ (𝑔𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
160119, 120, 130, 159syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
1611603adantl3 1217 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝐹𝑖) − (𝑔𝑖)) < 𝐸 ↔ ((𝐹𝑖) − 𝐸) < (𝑔𝑖)))
162158, 161mpbid 222 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) − 𝐸) < (𝑔𝑖))
16392, 96, 91, 118, 162lelttrd 10139 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐴𝑖) < (𝑔𝑖))
16421, 94readdcld 10013 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
1651643ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ∈ ℝ)
166163ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
167120, 119resubcld 10402 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
1681673adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ∈ ℝ)
169167leabsd 14087 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝑔𝑖) − (𝐹𝑖))))
170120recnd 10012 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ℂ)
171119recnd 10012 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℂ)
172170, 171abssubd 14126 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → (abs‘((𝑔𝑖) − (𝐹𝑖))) = (abs‘((𝐹𝑖) − (𝑔𝑖))))
173169, 172breqtrd 4639 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (abs‘((𝐹𝑖) − (𝑔𝑖))))
174167, 133, 128, 173, 154letrd 10138 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋)) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
1751743adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) ≤ (𝐹𝐷𝑔))
176168, 129, 131, 175, 157lelttrd 10139 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝑔𝑖) − (𝐹𝑖)) < 𝐸)
1771193adantl3 1217 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
17891, 177, 131ltsubadd2d 10569 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (((𝑔𝑖) − (𝐹𝑖)) < 𝐸 ↔ (𝑔𝑖) < ((𝐹𝑖) + 𝐸)))
179176, 178mpbid 222 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < ((𝐹𝑖) + 𝐸))
180 min1 11963 . . . . . . . . . . . . . 14 ((((𝐵𝑖) − (𝐹𝑖)) ∈ ℝ ∧ ((𝐹𝑖) − (𝐴𝑖)) ∈ ℝ) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18122, 32, 180syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if(((𝐵𝑖) − (𝐹𝑖)) ≤ ((𝐹𝑖) − (𝐴𝑖)), ((𝐵𝑖) − (𝐹𝑖)), ((𝐹𝑖) − (𝐴𝑖))) ≤ ((𝐵𝑖) − (𝐹𝑖)))
18294, 97, 22, 113, 181letrd 10138 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖)))
18321, 94, 16leaddsub2d 10573 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖) ↔ 𝐸 ≤ ((𝐵𝑖) − (𝐹𝑖))))
184182, 183mpbird 247 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
1851843ad2antl1 1221 . . . . . . . . . 10 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → ((𝐹𝑖) + 𝐸) ≤ (𝐵𝑖))
18691, 165, 166, 179, 185ltletrd 10141 . . . . . . . . 9 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) < (𝐵𝑖))
18783, 84, 91, 163, 186eliood 39131 . . . . . . . 8 (((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) ∧ 𝑖𝑋) → (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
188187ralrimiva 2960 . . . . . . 7 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
18982, 188jca 554 . . . . . 6 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
190 vex 3189 . . . . . . 7 𝑔 ∈ V
191190elixp 7859 . . . . . 6 (𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ (𝑔 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑔𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))))
192189, 191sylibr 224 . . . . 5 ((𝜑𝑔 ∈ (ℝ ↑𝑚 𝑋) ∧ (𝐹𝐷𝑔) < 𝐸) → 𝑔X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19380, 75, 11, 61, 192ballss3 38755 . . . 4 (𝜑 → (𝐹(ball‘𝐷)𝐸) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19466, 193eqsstrd 3618 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
19579, 194jca 554 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
196 eleq2 2687 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
197 sseq1 3605 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
198196, 197anbi12d 746 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
199198rspcev 3295 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
20073, 195, 199syl2anc 692 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891  ifcif 4058   ciun 4485   class class class wbr 4613  cmpt 4673   Or wor 4994  ran crn 5075   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802  Xcixp 7852  Fincfn 7899  infcinf 8291  cr 9879  0cc0 9880   + caddc 9883  *cxr 10017   < clt 10018  cle 10019  cmin 10210  2c2 11014  +crp 11776  (,)cioo 12117  cexp 12800  csqrt 13907  abscabs 13908  Σcsu 14350  distcds 15871  TopOpenctopn 16003  PsMetcpsmet 19649  ∞Metcxmt 19650  Metcme 19651  ballcbl 19652  MetOpencmopn 19655  ℝ^crrx 23079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-field 18671  df-subrg 18699  df-staf 18766  df-srng 18767  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-refld 19870  df-dsmm 19995  df-frlm 20010  df-top 20621  df-bases 20622  df-topon 20623  df-nm 22297  df-tng 22299  df-tch 22877  df-rrx 23081
This theorem is referenced by:  ioorrnopn  39832
  Copyright terms: Public domain W3C validator