Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioosshoi Structured version   Visualization version   GIF version

Theorem ioosshoi 39357
Description: A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
ioosshoi X𝑘𝑋 (𝐴(,)𝐵) ⊆ X𝑘𝑋 (𝐴[,)𝐵)

Proof of Theorem ioosshoi
StepHypRef Expression
1 nftru 1720 . . 3 𝑘
2 ioossico 12089 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
32a1i 11 . . 3 ((⊤ ∧ 𝑘𝑋) → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵))
41, 3ixpssixp 38093 . 2 (⊤ → X𝑘𝑋 (𝐴(,)𝐵) ⊆ X𝑘𝑋 (𝐴[,)𝐵))
54trud 1483 1 X𝑘𝑋 (𝐴(,)𝐵) ⊆ X𝑘𝑋 (𝐴[,)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 382  wtru 1475  wcel 1976  wss 3539  (class class class)co 6527  Xcixp 7771  (,)cioo 12002  [,)cico 12004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-pre-lttri 9866  ax-pre-lttrn 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-ioo 12006  df-ico 12008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator