Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotain Structured version   Visualization version   GIF version

Theorem iotain 39138
 Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
iotain (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))

Proof of Theorem iotain
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2611 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 vex 3343 . . . . 5 𝑦 ∈ V
32intsn 4665 . . . 4 {𝑦} = 𝑦
4 nfa1 2177 . . . . . . 7 𝑥𝑥(𝜑𝑥 = 𝑦)
5 sp 2200 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
64, 5abbid 2878 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
7 df-sn 4322 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
86, 7syl6eqr 2812 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
98inteqd 4632 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
10 iotaval 6023 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
113, 9, 103eqtr4a 2820 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
1211exlimiv 2007 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
131, 12sylbi 207 1 (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1630   = wceq 1632  ∃wex 1853  ∃!weu 2607  {cab 2746  {csn 4321  ∩ cint 4627  ℩cio 6010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-v 3342  df-sbc 3577  df-un 3720  df-in 3722  df-sn 4322  df-pr 4324  df-uni 4589  df-int 4628  df-iota 6012 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator