MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1ilem Structured version   Visualization version   GIF version

Theorem ip1ilem 27530
Description: Lemma for ip1i 27531. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip1ilem (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))

Proof of Theorem ip1ilem
StepHypRef Expression
1 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 27520 . . . . . 6 𝑈 ∈ NrmCVec
3 ip1i.a . . . . . 6 𝐴𝑋
4 ip1i.c . . . . . 6 𝐶𝑋
5 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
8 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
9 ip1i.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
105, 6, 7, 8, 94ipval2 27412 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
112, 3, 4, 10mp3an 1421 . . . . 5 (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
1211oveq2i 6615 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
13 2cn 11035 . . . . 5 2 ∈ ℂ
14 4cn 11042 . . . . 5 4 ∈ ℂ
155, 9dipcl 27416 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
162, 3, 4, 15mp3an 1421 . . . . 5 (𝐴𝑃𝐶) ∈ ℂ
1713, 14, 16mul12i 10175 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
185, 6nvgcl 27324 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
192, 3, 4, 18mp3an 1421 . . . . . . . . . . 11 (𝐴𝐺𝐶) ∈ 𝑋
205, 8, 2, 19nvcli 27366 . . . . . . . . . 10 (𝑁‘(𝐴𝐺𝐶)) ∈ ℝ
2120resqcli 12889 . . . . . . . . 9 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℝ
2221recni 9996 . . . . . . . 8 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℂ
23 ax-1cn 9938 . . . . . . . . . . . . . 14 1 ∈ ℂ
2423negcli 10293 . . . . . . . . . . . . 13 -1 ∈ ℂ
255, 7nvscl 27330 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
262, 24, 4, 25mp3an 1421 . . . . . . . . . . . 12 (-1𝑆𝐶) ∈ 𝑋
275, 6nvgcl 27324 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋)
282, 3, 26, 27mp3an 1421 . . . . . . . . . . 11 (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋
295, 8, 2, 28nvcli 27366 . . . . . . . . . 10 (𝑁‘(𝐴𝐺(-1𝑆𝐶))) ∈ ℝ
3029resqcli 12889 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
3130recni 9996 . . . . . . . 8 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
3222, 31subcli 10301 . . . . . . 7 (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
33 ax-icn 9939 . . . . . . . 8 i ∈ ℂ
345, 7nvscl 27330 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐶𝑋) → (i𝑆𝐶) ∈ 𝑋)
352, 33, 4, 34mp3an 1421 . . . . . . . . . . . . 13 (i𝑆𝐶) ∈ 𝑋
365, 6nvgcl 27324 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋)
372, 3, 35, 36mp3an 1421 . . . . . . . . . . . 12 (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋
385, 8, 2, 37nvcli 27366 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(i𝑆𝐶))) ∈ ℝ
3938resqcli 12889 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℝ
4039recni 9996 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℂ
4133negcli 10293 . . . . . . . . . . . . . 14 -i ∈ ℂ
425, 7nvscl 27330 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐶𝑋) → (-i𝑆𝐶) ∈ 𝑋)
432, 41, 4, 42mp3an 1421 . . . . . . . . . . . . 13 (-i𝑆𝐶) ∈ 𝑋
445, 6nvgcl 27324 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋)
452, 3, 43, 44mp3an 1421 . . . . . . . . . . . 12 (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋
465, 8, 2, 45nvcli 27366 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(-i𝑆𝐶))) ∈ ℝ
4746resqcli 12889 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
4847recni 9996 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
4940, 48subcli 10301 . . . . . . . 8 (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
5033, 49mulcli 9989 . . . . . . 7 (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
5113, 32, 50adddii 9994 . . . . . 6 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
52 ip1i.b . . . . . . . . 9 𝐵𝑋
535, 6, 7, 9, 1, 3, 52, 4, 8, 23ip0i 27529 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
545, 7nvsid 27331 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (1𝑆𝐶) = 𝐶)
552, 4, 54mp2an 707 . . . . . . . . . . . . 13 (1𝑆𝐶) = 𝐶
5655oveq2i 6615 . . . . . . . . . . . 12 ((𝐴𝐺𝐵)𝐺(1𝑆𝐶)) = ((𝐴𝐺𝐵)𝐺𝐶)
5756fveq2i 6151 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺𝐵)𝐺𝐶))
5857oveq1i 6614 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2)
5958oveq1i 6614 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2))
6055oveq2i 6615 . . . . . . . . . . . 12 ((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)) = ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)
6160fveq2i 6151 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))
6261oveq1i 6614 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2)
6362oveq1i 6614 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))
6459, 63oveq12i 6616 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)))
6555oveq2i 6615 . . . . . . . . . . . 12 (𝐴𝐺(1𝑆𝐶)) = (𝐴𝐺𝐶)
6665fveq2i 6151 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(1𝑆𝐶))) = (𝑁‘(𝐴𝐺𝐶))
6766oveq1i 6614 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) = ((𝑁‘(𝐴𝐺𝐶))↑2)
6867oveq1i 6614 . . . . . . . . 9 (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))
6968oveq2i 6615 . . . . . . . 8 (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
7053, 64, 693eqtr3i 2651 . . . . . . 7 ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
715, 6, 7, 9, 1, 3, 52, 4, 8, 33ip0i 27529 . . . . . . . . 9 ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))
7271oveq2i 6615 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
735, 6nvgcl 27324 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
742, 3, 52, 73mp3an 1421 . . . . . . . . . . . . . 14 (𝐴𝐺𝐵) ∈ 𝑋
755, 6nvgcl 27324 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋)
762, 74, 35, 75mp3an 1421 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋
775, 8, 2, 76nvcli 27366 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶))) ∈ ℝ
7877resqcli 12889 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℝ
7978recni 9996 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℂ
805, 6nvgcl 27324 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋)
812, 74, 43, 80mp3an 1421 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋
825, 8, 2, 81nvcli 27366 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶))) ∈ ℝ
8382resqcli 12889 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
8483recni 9996 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
8579, 84subcli 10301 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
865, 7nvscl 27330 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
872, 24, 52, 86mp3an 1421 . . . . . . . . . . . . . . 15 (-1𝑆𝐵) ∈ 𝑋
885, 6nvgcl 27324 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
892, 3, 87, 88mp3an 1421 . . . . . . . . . . . . . 14 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
905, 6nvgcl 27324 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋)
912, 89, 35, 90mp3an 1421 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋
925, 8, 2, 91nvcli 27366 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶))) ∈ ℝ
9392resqcli 12889 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℝ
9493recni 9996 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℂ
955, 6nvgcl 27324 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋)
962, 89, 43, 95mp3an 1421 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋
975, 8, 2, 96nvcli 27366 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶))) ∈ ℝ
9897resqcli 12889 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
9998recni 9996 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
10094, 99subcli 10301 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
10133, 85, 100adddii 9994 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
10233, 13, 49mul12i 10175 . . . . . . . 8 (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10372, 101, 1023eqtr3i 2651 . . . . . . 7 ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10470, 103oveq12i 6616 . . . . . 6 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
10551, 104eqtr4i 2646 . . . . 5 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1065, 6nvgcl 27324 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋)
1072, 74, 4, 106mp3an 1421 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋
1085, 8, 2, 107nvcli 27366 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺𝐶)) ∈ ℝ
109108resqcli 12889 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℝ
110109recni 9996 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℂ
1115, 6nvgcl 27324 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋)
1122, 74, 26, 111mp3an 1421 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋
1135, 8, 2, 112nvcli 27366 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶))) ∈ ℝ
114113resqcli 12889 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
115114recni 9996 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
116110, 115subcli 10301 . . . . . 6 (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
1175, 6nvgcl 27324 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋)
1182, 89, 4, 117mp3an 1421 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋
1195, 8, 2, 118nvcli 27366 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)) ∈ ℝ
120119resqcli 12889 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℝ
121120recni 9996 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℂ
1225, 6nvgcl 27324 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋)
1232, 89, 26, 122mp3an 1421 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋
1245, 8, 2, 123nvcli 27366 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶))) ∈ ℝ
125124resqcli 12889 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
126125recni 9996 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
127121, 126subcli 10301 . . . . . 6 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
12833, 85mulcli 9989 . . . . . 6 (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
12933, 100mulcli 9989 . . . . . 6 (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
130116, 127, 128, 129add4i 10204 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1315, 9dipcl 27416 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ)
1322, 74, 4, 131mp3an 1421 . . . . . . 7 ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ
1335, 9dipcl 27416 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ)
1342, 89, 4, 133mp3an 1421 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ
13514, 132, 134adddii 9994 . . . . . 6 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
1365, 6, 7, 8, 94ipval2 27412 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))))
1372, 74, 4, 136mp3an 1421 . . . . . . 7 (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))))
1385, 6, 7, 8, 94ipval2 27412 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1392, 89, 4, 138mp3an 1421 . . . . . . 7 (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
140137, 139oveq12i 6616 . . . . . 6 ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
141135, 140eqtr2i 2644 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
142105, 130, 1413eqtri 2647 . . . 4 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
14312, 17, 1423eqtr3ri 2652 . . 3 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
144143oveq1i 6614 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = ((4 · (2 · (𝐴𝑃𝐶))) / 4)
145132, 134addcli 9988 . . 3 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) ∈ ℂ
146 4ne0 11061 . . 3 4 ≠ 0
147145, 14, 146divcan3i 10715 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))
14813, 16mulcli 9989 . . 3 (2 · (𝐴𝑃𝐶)) ∈ ℂ
149148, 14, 146divcan3i 10715 . 2 ((4 · (2 · (𝐴𝑃𝐶))) / 4) = (2 · (𝐴𝑃𝐶))
150144, 147, 1493eqtr3i 2651 1 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  cc 9878  1c1 9881  ici 9882   + caddc 9883   · cmul 9885  cmin 10210  -cneg 10211   / cdiv 10628  2c2 11014  4c4 11016  cexp 12800  NrmCVeccnv 27288   +𝑣 cpv 27289  BaseSetcba 27290   ·𝑠OLD cns 27291  normCVcnmcv 27294  ·𝑖OLDcdip 27404  CPreHilOLDccphlo 27516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-grpo 27196  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304  df-dip 27405  df-ph 27517
This theorem is referenced by:  ip1i  27531
  Copyright terms: Public domain W3C validator