MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2di Structured version   Visualization version   GIF version

Theorem ip2di 20713
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
ip2di.1 (𝜑𝑊 ∈ PreHil)
ip2di.2 (𝜑𝐴𝑉)
ip2di.3 (𝜑𝐵𝑉)
ip2di.4 (𝜑𝐶𝑉)
ip2di.5 (𝜑𝐷𝑉)
Assertion
Ref Expression
ip2di (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))

Proof of Theorem ip2di
StepHypRef Expression
1 ip2di.1 . . 3 (𝜑𝑊 ∈ PreHil)
2 ip2di.2 . . 3 (𝜑𝐴𝑉)
3 ip2di.3 . . 3 (𝜑𝐵𝑉)
4 phllmod 20702 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
51, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 ip2di.4 . . . 4 (𝜑𝐶𝑉)
7 ip2di.5 . . . 4 (𝜑𝐷𝑉)
8 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
9 ipdir.g . . . . 5 + = (+g𝑊)
108, 9lmodvacl 19577 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉) → (𝐶 + 𝐷) ∈ 𝑉)
115, 6, 7, 10syl3anc 1363 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ 𝑉)
12 phlsrng.f . . . 4 𝐹 = (Scalar‘𝑊)
13 phllmhm.h . . . 4 , = (·𝑖𝑊)
14 ipdir.p . . . 4 = (+g𝐹)
1512, 13, 8, 9, 14ipdir 20711 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉 ∧ (𝐶 + 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
161, 2, 3, 11, 15syl13anc 1364 . 2 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))))
1712, 13, 8, 9, 14ipdi 20712 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐶𝑉𝐷𝑉)) → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
181, 2, 6, 7, 17syl13anc 1364 . . 3 (𝜑 → (𝐴 , (𝐶 + 𝐷)) = ((𝐴 , 𝐶) (𝐴 , 𝐷)))
1912, 13, 8, 9, 14ipdi 20712 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐷𝑉)) → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
201, 3, 6, 7, 19syl13anc 1364 . . . 4 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐶) (𝐵 , 𝐷)))
2112phlsrng 20703 . . . . . 6 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
22 srngring 19552 . . . . . 6 (𝐹 ∈ *-Ring → 𝐹 ∈ Ring)
23 ringcmn 19260 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
241, 21, 22, 234syl 19 . . . . 5 (𝜑𝐹 ∈ CMnd)
25 eqid 2818 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
2612, 13, 8, 25ipcl 20705 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
271, 3, 6, 26syl3anc 1363 . . . . 5 (𝜑 → (𝐵 , 𝐶) ∈ (Base‘𝐹))
2812, 13, 8, 25ipcl 20705 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉) → (𝐵 , 𝐷) ∈ (Base‘𝐹))
291, 3, 7, 28syl3anc 1363 . . . . 5 (𝜑 → (𝐵 , 𝐷) ∈ (Base‘𝐹))
3025, 14cmncom 18852 . . . . 5 ((𝐹 ∈ CMnd ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐷) ∈ (Base‘𝐹)) → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3124, 27, 29, 30syl3anc 1363 . . . 4 (𝜑 → ((𝐵 , 𝐶) (𝐵 , 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3220, 31eqtrd 2853 . . 3 (𝜑 → (𝐵 , (𝐶 + 𝐷)) = ((𝐵 , 𝐷) (𝐵 , 𝐶)))
3318, 32oveq12d 7163 . 2 (𝜑 → ((𝐴 , (𝐶 + 𝐷)) (𝐵 , (𝐶 + 𝐷))) = (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))))
3412, 13, 8, 25ipcl 20705 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
351, 2, 6, 34syl3anc 1363 . . 3 (𝜑 → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3612, 13, 8, 25ipcl 20705 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉) → (𝐴 , 𝐷) ∈ (Base‘𝐹))
371, 2, 7, 36syl3anc 1363 . . 3 (𝜑 → (𝐴 , 𝐷) ∈ (Base‘𝐹))
3825, 14cmn4 18855 . . 3 ((𝐹 ∈ CMnd ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐷) ∈ (Base‘𝐹)) ∧ ((𝐵 , 𝐷) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
3924, 35, 37, 29, 27, 38syl122anc 1371 . 2 (𝜑 → (((𝐴 , 𝐶) (𝐴 , 𝐷)) ((𝐵 , 𝐷) (𝐵 , 𝐶))) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
4016, 33, 393eqtrd 2857 1 (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) (𝐵 , 𝐷)) ((𝐴 , 𝐷) (𝐵 , 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556  ·𝑖cip 16558  CMndccmn 18835  Ringcrg 19226  *-Ringcsr 19544  LModclmod 19563  PreHilcphl 20696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-ghm 18294  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-rnghom 19396  df-staf 19545  df-srng 19546  df-lmod 19565  df-lmhm 19723  df-lvec 19804  df-sra 19873  df-rgmod 19874  df-phl 20698
This theorem is referenced by:  cph2di  23738
  Copyright terms: Public domain W3C validator