MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2dii Structured version   Visualization version   GIF version

Theorem ip2dii 27827
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2dii.1 𝑋 = (BaseSet‘𝑈)
ip2dii.2 𝐺 = ( +𝑣𝑈)
ip2dii.7 𝑃 = (·𝑖OLD𝑈)
ip2dii.u 𝑈 ∈ CPreHilOLD
ip2dii.a 𝐴𝑋
ip2dii.b 𝐵𝑋
ip2dii.c 𝐶𝑋
ip2dii.d 𝐷𝑋
Assertion
Ref Expression
ip2dii ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))

Proof of Theorem ip2dii
StepHypRef Expression
1 ip2dii.u . . . 4 𝑈 ∈ CPreHilOLD
2 ip2dii.a . . . . 5 𝐴𝑋
3 ip2dii.c . . . . 5 𝐶𝑋
4 ip2dii.d . . . . 5 𝐷𝑋
52, 3, 43pm3.2i 1259 . . . 4 (𝐴𝑋𝐶𝑋𝐷𝑋)
6 ip2dii.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
7 ip2dii.2 . . . . 5 𝐺 = ( +𝑣𝑈)
8 ip2dii.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
96, 7, 8dipdi 27826 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶𝑋𝐷𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)))
101, 5, 9mp2an 708 . . 3 (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))
11 ip2dii.b . . . . 5 𝐵𝑋
1211, 3, 43pm3.2i 1259 . . . 4 (𝐵𝑋𝐶𝑋𝐷𝑋)
136, 7, 8dipdi 27826 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋𝐷𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
141, 12, 13mp2an 708 . . 3 (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))
1510, 14oveq12i 6702 . 2 ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
161phnvi 27799 . . . . 5 𝑈 ∈ NrmCVec
176, 7nvgcl 27603 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
1816, 3, 4, 17mp3an 1464 . . . 4 (𝐶𝐺𝐷) ∈ 𝑋
192, 11, 183pm3.2i 1259 . . 3 (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)
206, 7, 8dipdir 27825 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))))
211, 19, 20mp2an 708 . 2 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))
226, 8dipcl 27695 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
2316, 2, 3, 22mp3an 1464 . . 3 (𝐴𝑃𝐶) ∈ ℂ
246, 8dipcl 27695 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑃𝐷) ∈ ℂ)
2516, 11, 4, 24mp3an 1464 . . 3 (𝐵𝑃𝐷) ∈ ℂ
266, 8dipcl 27695 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐷𝑋) → (𝐴𝑃𝐷) ∈ ℂ)
2716, 2, 4, 26mp3an 1464 . . 3 (𝐴𝑃𝐷) ∈ ℂ
286, 8dipcl 27695 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑃𝐶) ∈ ℂ)
2916, 11, 3, 28mp3an 1464 . . 3 (𝐵𝑃𝐶) ∈ ℂ
3023, 25, 27, 29add42i 10299 . 2 (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
3115, 21, 303eqtr4i 2683 1 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972   + caddc 9977  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569  ·𝑖OLDcdip 27683  CPreHilOLDccphlo 27795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-dip 27684  df-ph 27796
This theorem is referenced by:  pythi  27833
  Copyright terms: Public domain W3C validator