MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem2 Structured version   Visualization version   GIF version

Theorem ipasslem2 27988
Description: Lemma for ipassi 27997. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem2 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem2
StepHypRef Expression
1 nn0cn 11486 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21negcld 10563 . . . 4 (𝑁 ∈ ℕ0 → -𝑁 ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 27972 . . . . 5 𝑈 ∈ NrmCVec
5 ipasslem1.b . . . . 5 𝐵𝑋
6 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
7 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
86, 7dipcl 27868 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
94, 5, 8mp3an13 1556 . . . 4 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
10 mulcl 10204 . . . 4 ((-𝑁 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
112, 9, 10syl2an 495 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
12 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
136, 12nvscl 27782 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
144, 13mp3an1 1552 . . . . 5 ((-𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
152, 14sylan 489 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
166, 7dipcl 27868 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-𝑁𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
174, 5, 16mp3an13 1556 . . . 4 ((-𝑁𝑆𝐴) ∈ 𝑋 → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
1815, 17syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
19 ax-1cn 10178 . . . . . . . . . . . . 13 1 ∈ ℂ
20 mulneg2 10651 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · -1) = -(𝑁 · 1))
2119, 20mpan2 709 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 · -1) = -(𝑁 · 1))
22 mulid1 10221 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 · 1) = 𝑁)
2322negeqd 10459 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → -(𝑁 · 1) = -𝑁)
2421, 23eqtr2d 2787 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -𝑁 = (𝑁 · -1))
2524adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → -𝑁 = (𝑁 · -1))
2625oveq1d 6820 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = ((𝑁 · -1)𝑆𝐴))
27 neg1cn 11308 . . . . . . . . . 10 -1 ∈ ℂ
286, 12nvsass 27784 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
294, 28mpan 708 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3027, 29mp3an2 1553 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3126, 30eqtrd 2786 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
321, 31sylan 489 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3332oveq1d 6820 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵))
346, 12nvscl 27782 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
354, 27, 34mp3an12 1555 . . . . . . 7 (𝐴𝑋 → (-1𝑆𝐴) ∈ 𝑋)
36 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
376, 36, 12, 7, 3, 5ipasslem1 27987 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3835, 37sylan2 492 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3933, 38eqtrd 2786 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4039oveq2d 6821 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
416, 7dipcl 27868 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
424, 5, 41mp3an13 1556 . . . . . . 7 ((-1𝑆𝐴) ∈ 𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
4335, 42syl 17 . . . . . 6 (𝐴𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
44 mulcl 10204 . . . . . 6 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
451, 43, 44syl2an 495 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
4611, 45negsubd 10582 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
47 mulneg1 10650 . . . . . . 7 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
481, 43, 47syl2an 495 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4948oveq2d 6821 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
502adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → -𝑁 ∈ ℂ)
519adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
5243adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
5350, 51, 52adddid 10248 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
546, 36, 12, 7, 3ipdiri 27986 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
555, 54mp3an3 1554 . . . . . . . . . 10 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
5635, 55mpdan 705 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
57 eqid 2752 . . . . . . . . . . . . 13 (0vec𝑈) = (0vec𝑈)
586, 36, 12, 57nvrinv 27807 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
594, 58mpan 708 . . . . . . . . . . 11 (𝐴𝑋 → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
6059oveq1d 6820 . . . . . . . . . 10 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
616, 57, 7dip0l 27874 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
624, 5, 61mp2an 710 . . . . . . . . . 10 ((0vec𝑈)𝑃𝐵) = 0
6360, 62syl6eq 2802 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0)
6456, 63eqtr3d 2788 . . . . . . . 8 (𝐴𝑋 → ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)) = 0)
6564oveq2d 6821 . . . . . . 7 (𝐴𝑋 → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = (-𝑁 · 0))
662mul01d 10419 . . . . . . 7 (𝑁 ∈ ℕ0 → (-𝑁 · 0) = 0)
6765, 66sylan9eqr 2808 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = 0)
6853, 67eqtr3d 2788 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
6949, 68eqtr3d 2788 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
7040, 46, 693eqtr2d 2792 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = 0)
7111, 18, 70subeq0d 10584 . 2 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) = ((-𝑁𝑆𝐴)𝑃𝐵))
7271eqcomd 2758 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  cfv 6041  (class class class)co 6805  cc 10118  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  cmin 10450  -cneg 10451  0cn0 11476  NrmCVeccnv 27740   +𝑣 cpv 27741  BaseSetcba 27742   ·𝑠OLD cns 27743  0veccn0v 27744  ·𝑖OLDcdip 27856  CPreHilOLDccphlo 27968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-grpo 27648  df-gid 27649  df-ginv 27650  df-ablo 27700  df-vc 27715  df-nv 27748  df-va 27751  df-ba 27752  df-sm 27753  df-0v 27754  df-nmcv 27756  df-dip 27857  df-ph 27969
This theorem is referenced by:  ipasslem3  27989
  Copyright terms: Public domain W3C validator