MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem5 Structured version   Visualization version   GIF version

Theorem ipasslem5 27536
Description: Lemma for ipassi 27542. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem5 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem5
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 11734 . . 3 (𝐶 ∈ ℚ ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘))
2 zcn 11326 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
3 nnrecre 11001 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
43recnd 10012 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
5 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
65phnvi 27517 . . . . . . . . . 10 𝑈 ∈ NrmCVec
7 ipasslem1.b . . . . . . . . . 10 𝐵𝑋
8 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
9 ip1i.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
108, 9dipcl 27413 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
116, 7, 10mp3an13 1412 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
12 mulass 9968 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
132, 4, 11, 12syl3an 1365 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
142adantr 481 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈ ℂ)
15 nncn 10972 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1615adantl 482 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
17 nnne0 10997 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1817adantl 482 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
1914, 16, 18divrecd 10748 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
20193adant3 1079 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
2120oveq1d 6619 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)))
2220oveq1d 6619 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴))
23 id 22 . . . . . . . . . . . 12 (𝐴𝑋𝐴𝑋)
24 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
258, 24nvsass 27329 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
266, 25mpan 705 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
272, 4, 23, 26syl3an 1365 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2822, 27eqtrd 2655 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2928oveq1d 6619 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵))
308, 24nvscl 27327 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
316, 30mp3an1 1408 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
324, 31sylan 488 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
33 ip1i.2 . . . . . . . . . . . 12 𝐺 = ( +𝑣𝑈)
348, 33, 24, 9, 5, 7ipasslem3 27534 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
3532, 34sylan2 491 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
36353impb 1257 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
378, 33, 24, 9, 5, 7ipasslem4 27535 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
38373adant1 1077 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
3938oveq2d 6620 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4029, 36, 393eqtrd 2659 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4113, 21, 403eqtr4rd 2666 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
42 oveq1 6611 . . . . . . . . 9 (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴))
4342oveq1d 6619 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵))
44 oveq1 6611 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
4543, 44eqeq12d 2636 . . . . . . 7 (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))))
4641, 45syl5ibrcom 237 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
47463expia 1264 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4847com23 86 . . . 4 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4948rexlimivv 3029 . . 3 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
501, 49sylbi 207 . 2 (𝐶 ∈ ℚ → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
5150imp 445 1 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   · cmul 9885   / cdiv 10628  cn 10964  cz 11321  cq 11732  NrmCVeccnv 27285   +𝑣 cpv 27286  BaseSetcba 27287   ·𝑠OLD cns 27288  ·𝑖OLDcdip 27401  CPreHilOLDccphlo 27513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-grpo 27193  df-gid 27194  df-ginv 27195  df-ablo 27245  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-nmcv 27301  df-dip 27402  df-ph 27514
This theorem is referenced by:  ipasslem8  27538
  Copyright terms: Public domain W3C validator