MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem7 Structured version   Visualization version   GIF version

Theorem ipasslem7 27531
Description: Lemma for ipassi 27536. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on . (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
ipasslem7.j 𝐽 = (topGen‘ran (,))
ipasslem7.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipasslem7 𝐹 ∈ (𝐽 Cn 𝐾)
Distinct variable groups:   𝑤,𝐵   𝑤,𝐾   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)   𝐽(𝑤)

Proof of Theorem ipasslem7
StepHypRef Expression
1 ipasslem7.f . 2 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
2 ipasslem7.j . . . . 5 𝐽 = (topGen‘ran (,))
3 ipasslem7.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
43tgioo2 22509 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
52, 4eqtri 2648 . . . 4 𝐽 = (𝐾t ℝ)
63cnfldtopon 22491 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
76a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
8 ax-resscn 9938 . . . . 5 ℝ ⊆ ℂ
98a1i 11 . . . 4 (⊤ → ℝ ⊆ ℂ)
107cnmptid 21369 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾))
11 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1211phnvi 27511 . . . . . . . . . 10 𝑈 ∈ NrmCVec
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 eqid 2626 . . . . . . . . . . 11 (IndMet‘𝑈) = (IndMet‘𝑈)
1513, 14imsxmet 27387 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋))
1612, 15ax-mp 5 . . . . . . . . 9 (IndMet‘𝑈) ∈ (∞Met‘𝑋)
17 eqid 2626 . . . . . . . . . 10 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
1817mopntopon 22149 . . . . . . . . 9 ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
1916, 18mp1i 13 . . . . . . . 8 (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
20 ipasslem7.a . . . . . . . . 9 𝐴𝑋
2120a1i 11 . . . . . . . 8 (⊤ → 𝐴𝑋)
227, 19, 21cnmptc 21370 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
23 ip1i.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
2414, 17, 23, 3smcn 27393 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
2512, 24mp1i 13 . . . . . . 7 (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
267, 10, 22, 25cnmpt12f 21374 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
27 ipasslem7.b . . . . . . . 8 𝐵𝑋
2827a1i 11 . . . . . . 7 (⊤ → 𝐵𝑋)
297, 19, 28cnmptc 21370 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
30 ip1i.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
3130, 14, 17, 3dipcn 27415 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
3212, 31mp1i 13 . . . . . 6 (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
337, 26, 29, 32cnmpt12f 21374 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
3413, 30dipcl 27407 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3512, 20, 27, 34mp3an 1421 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
3635a1i 11 . . . . . . 7 (⊤ → (𝐴𝑃𝐵) ∈ ℂ)
377, 7, 36cnmptc 21370 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
383mulcn 22573 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
3938a1i 11 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
407, 10, 37, 39cnmpt12f 21374 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾))
413subcn 22572 . . . . . 6 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4241a1i 11 . . . . 5 (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
437, 33, 40, 42cnmpt12f 21374 . . . 4 (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾))
445, 7, 9, 43cnmpt1res 21384 . . 3 (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾))
4544trud 1490 . 2 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)
461, 45eqeltri 2700 1 𝐹 ∈ (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wtru 1481  wcel 1992  wss 3560  cmpt 4678  ran crn 5080  cfv 5850  (class class class)co 6605  cc 9879  cr 9880   · cmul 9886  cmin 10211  (,)cioo 12114  t crest 15997  TopOpenctopn 15998  topGenctg 16014  ∞Metcxmt 19645  MetOpencmopn 19650  fldccnfld 19660  TopOnctopon 20613   Cn ccn 20933   ×t ctx 21268  NrmCVeccnv 27279   +𝑣 cpv 27280  BaseSetcba 27281   ·𝑠OLD cns 27282  IndMetcims 27286  ·𝑖OLDcdip 27395  CPreHilOLDccphlo 27507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cn 20936  df-cnp 20937  df-tx 21270  df-hmeo 21463  df-xms 22030  df-ms 22031  df-tms 22032  df-grpo 27187  df-gid 27188  df-ginv 27189  df-gdiv 27190  df-ablo 27239  df-vc 27254  df-nv 27287  df-va 27290  df-ba 27291  df-sm 27292  df-0v 27293  df-vs 27294  df-nmcv 27295  df-ims 27296  df-dip 27396  df-ph 27508
This theorem is referenced by:  ipasslem8  27532
  Copyright terms: Public domain W3C validator