![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare ipass 20113). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ipass.p | ⊢ × = (.r‘𝐹) |
ipassr.i | ⊢ ∗ = (*𝑟‘𝐹) |
Ref | Expression |
---|---|
ipassr | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ PreHil) | |
2 | simpr3 1214 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐶 ∈ 𝐾) | |
3 | simpr2 1212 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐵 ∈ 𝑉) | |
4 | simpr1 1210 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐴 ∈ 𝑉) | |
5 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
7 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
8 | ipdir.f | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
9 | ipass.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | ipass.p | . . . . . 6 ⊢ × = (.r‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | ipass 20113 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
12 | 1, 2, 3, 4, 11 | syl13anc 1441 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐶 · 𝐵) , 𝐴) = (𝐶 × (𝐵 , 𝐴))) |
13 | 12 | fveq2d 6308 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = ( ∗ ‘(𝐶 × (𝐵 , 𝐴)))) |
14 | phllmod 20098 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 472 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝑊 ∈ LMod) |
16 | 7, 5, 9, 8 | lmodvscl 19003 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐶 · 𝐵) ∈ 𝑉) |
17 | 15, 2, 3, 16 | syl3anc 1439 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐶 · 𝐵) ∈ 𝑉) |
18 | ipassr.i | . . . . 5 ⊢ ∗ = (*𝑟‘𝐹) | |
19 | 5, 6, 7, 18 | ipcj 20102 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐶 · 𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
20 | 1, 17, 4, 19 | syl3anc 1439 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘((𝐶 · 𝐵) , 𝐴)) = (𝐴 , (𝐶 · 𝐵))) |
21 | 5 | phlsrng 20099 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
22 | 21 | adantr 472 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → 𝐹 ∈ *-Ring) |
23 | 5, 6, 7, 8 | ipcl 20101 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵 , 𝐴) ∈ 𝐾) |
24 | 1, 3, 4, 23 | syl3anc 1439 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐵 , 𝐴) ∈ 𝐾) |
25 | 18, 8, 10 | srngmul 18981 | . . . 4 ⊢ ((𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ∧ (𝐵 , 𝐴) ∈ 𝐾) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
26 | 22, 2, 24, 25 | syl3anc 1439 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐶 × (𝐵 , 𝐴))) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
27 | 13, 20, 26 | 3eqtr3d 2766 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶))) |
28 | 5, 6, 7, 18 | ipcj 20102 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
29 | 1, 3, 4, 28 | syl3anc 1439 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ( ∗ ‘(𝐵 , 𝐴)) = (𝐴 , 𝐵)) |
30 | 29 | oveq1d 6780 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (( ∗ ‘(𝐵 , 𝐴)) × ( ∗ ‘𝐶)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
31 | 27, 30 | eqtrd 2758 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 .rcmulr 16065 *𝑟cstv 16066 Scalarcsca 16067 ·𝑠 cvsca 16068 ·𝑖cip 16069 *-Ringcsr 18967 LModclmod 18986 PreHilcphl 20092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-ip 16082 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-mhm 17457 df-ghm 17780 df-mgp 18611 df-ur 18623 df-ring 18670 df-oppr 18744 df-rnghom 18838 df-staf 18968 df-srng 18969 df-lmod 18988 df-lmhm 19145 df-lvec 19226 df-sra 19295 df-rgmod 19296 df-phl 20094 |
This theorem is referenced by: ipassr2 20115 cphassr 23133 tchcphlem2 23156 |
Copyright terms: Public domain | W3C validator |