Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcau Structured version   Visualization version   GIF version

Theorem ipcau 23237
 Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
ipcau.v 𝑉 = (Base‘𝑊)
ipcau.h , = (·𝑖𝑊)
ipcau.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
ipcau ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))

Proof of Theorem ipcau
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (toℂHil‘𝑊) = (toℂHil‘𝑊)
2 ipcau.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2760 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 simp1 1131 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ ℂPreHil)
5 cphphl 23171 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
64, 5syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ PreHil)
7 eqid 2760 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
83, 7cphsca 23179 . . . 4 (𝑊 ∈ ℂPreHil → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
94, 8syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))))
10 ipcau.h . . 3 , = (·𝑖𝑊)
113, 7cphsqrtcl 23184 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
124, 11sylan 489 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ (Base‘(Scalar‘𝑊)))
132, 10ipge0 23198 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
144, 13sylan 489 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) ∧ 𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
15 eqid 2760 . . 3 (norm‘(toℂHil‘𝑊)) = (norm‘(toℂHil‘𝑊))
16 eqid 2760 . . 3 ((𝑌 , 𝑋) / (𝑌 , 𝑌)) = ((𝑌 , 𝑋) / (𝑌 , 𝑌))
17 simp2 1132 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
18 simp3 1133 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
191, 2, 3, 6, 9, 10, 12, 14, 7, 15, 16, 17, 18ipcau2 23233 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ (((norm‘(toℂHil‘𝑊))‘𝑋) · ((norm‘(toℂHil‘𝑊))‘𝑌)))
20 ipcau.n . . . . . 6 𝑁 = (norm‘𝑊)
211, 20cphtchnm 23229 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘(toℂHil‘𝑊)))
224, 21syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → 𝑁 = (norm‘(toℂHil‘𝑊)))
2322fveq1d 6354 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑋) = ((norm‘(toℂHil‘𝑊))‘𝑋))
2422fveq1d 6354 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑁𝑌) = ((norm‘(toℂHil‘𝑊))‘𝑌))
2523, 24oveq12d 6831 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → ((𝑁𝑋) · (𝑁𝑌)) = (((norm‘(toℂHil‘𝑊))‘𝑋) · ((norm‘(toℂHil‘𝑊))‘𝑌)))
2619, 25breqtrrd 4832 1 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁𝑋) · (𝑁𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℝcr 10127  0cc0 10128   · cmul 10133   ≤ cle 10267   / cdiv 10876  √csqrt 14172  abscabs 14173  Basecbs 16059   ↾s cress 16060  Scalarcsca 16146  ·𝑖cip 16148  ℂfldccnfld 19948  PreHilcphl 20171  normcnm 22582  ℂPreHilccph 23166  toℂHilctch 23167 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-fz 12520  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-ghm 17859  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-staf 19047  df-srng 19048  df-lmod 19067  df-lmhm 19224  df-lvec 19305  df-sra 19374  df-rgmod 19375  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-phl 20173  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589  df-tng 22590  df-nlm 22592  df-clm 23063  df-cph 23168  df-tch 23169 This theorem is referenced by:  ipcnlem2  23243
 Copyright terms: Public domain W3C validator