MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnval Structured version   Visualization version   GIF version

Theorem ipcnval 13825
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 13787 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
2 remul 13811 . . 3 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
31, 2sylan2 491 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
4 recj 13806 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
54adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
65oveq2d 6626 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) = ((ℜ‘𝐴) · (ℜ‘𝐵)))
7 imcj 13814 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
87adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
98oveq2d 6626 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = ((ℑ‘𝐴) · -(ℑ‘𝐵)))
10 imcl 13793 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 10020 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 13793 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 10020 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 mulneg2 10419 . . . . 5 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
1511, 13, 14syl2an 494 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
169, 15eqtrd 2655 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
176, 16oveq12d 6628 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))))
18 recl 13792 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1918recnd 10020 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
20 recl 13792 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
2120recnd 10020 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
22 mulcl 9972 . . . 4 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2319, 21, 22syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
24 mulcl 9972 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2511, 13, 24syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2623, 25subnegd 10351 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
273, 17, 263eqtrd 2659 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  cc 9886   + caddc 9891   · cmul 9893  cmin 10218  -cneg 10219  ccj 13778  cre 13779  cim 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-cj 13781  df-re 13782  df-im 13783
This theorem is referenced by:  cjmulval  13827  ipcni  13872  ipcnd  13904
  Copyright terms: Public domain W3C validator