MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdiri Structured version   Visualization version   GIF version

Theorem ipdiri 28599
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ipdiri ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))

Proof of Theorem ipdiri
StepHypRef Expression
1 oveq1 7155 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵))
21oveq1d 7163 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶))
3 oveq1 7155 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (𝐴𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶))
43oveq1d 7163 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)))
52, 4eqeq12d 2835 . 2 (𝐴 = if(𝐴𝑋, 𝐴, (0vec𝑈)) → (((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶))))
6 oveq2 7156 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈))))
76oveq1d 7163 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶))
8 oveq1 7155 . . . 4 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (𝐵𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))
98oveq2d 7164 . . 3 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)))
107, 9eqeq12d 2835 . 2 (𝐵 = if(𝐵𝑋, 𝐵, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺𝐵)𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (𝐵𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶))))
11 oveq2 7156 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
12 oveq2 7156 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) = (if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
13 oveq2 7156 . . . 4 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶) = (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
1412, 13oveq12d 7166 . . 3 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈)))))
1511, 14eqeq12d 2835 . 2 (𝐶 = if(𝐶𝑋, 𝐶, (0vec𝑈)) → (((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃𝐶) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃𝐶) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃𝐶)) ↔ ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))))
16 ip1i.1 . . 3 𝑋 = (BaseSet‘𝑈)
17 ip1i.2 . . 3 𝐺 = ( +𝑣𝑈)
18 ip1i.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
19 ip1i.7 . . 3 𝑃 = (·𝑖OLD𝑈)
20 ip1i.9 . . 3 𝑈 ∈ CPreHilOLD
21 eqid 2819 . . . 4 (0vec𝑈) = (0vec𝑈)
2216, 21, 20elimph 28589 . . 3 if(𝐴𝑋, 𝐴, (0vec𝑈)) ∈ 𝑋
2316, 21, 20elimph 28589 . . 3 if(𝐵𝑋, 𝐵, (0vec𝑈)) ∈ 𝑋
2416, 21, 20elimph 28589 . . 3 if(𝐶𝑋, 𝐶, (0vec𝑈)) ∈ 𝑋
2516, 17, 18, 19, 20, 22, 23, 24ipdirilem 28598 . 2 ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝐺if(𝐵𝑋, 𝐵, (0vec𝑈)))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) = ((if(𝐴𝑋, 𝐴, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))) + (if(𝐵𝑋, 𝐵, (0vec𝑈))𝑃if(𝐶𝑋, 𝐶, (0vec𝑈))))
265, 10, 15, 25dedth3h 4523 1 ((𝐴𝑋𝐵𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082   = wceq 1531  wcel 2108  ifcif 4465  cfv 6348  (class class class)co 7148   + caddc 10532   +𝑣 cpv 28354  BaseSetcba 28355   ·𝑠OLD cns 28356  0veccn0v 28357  ·𝑖OLDcdip 28469  CPreHilOLDccphlo 28581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-grpo 28262  df-gid 28263  df-ginv 28264  df-ablo 28314  df-vc 28328  df-nv 28361  df-va 28364  df-ba 28365  df-sm 28366  df-0v 28367  df-nmcv 28369  df-dip 28470  df-ph 28582
This theorem is referenced by:  ipasslem1  28600  ipasslem2  28601  ipasslem11  28609  dipdir  28611
  Copyright terms: Public domain W3C validator