MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   GIF version

Theorem ipeq0 20781
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ipeq0 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))

Proof of Theorem ipeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 ip0l.o . . . . . 6 0 = (0g𝑊)
5 eqid 2821 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
6 ip0l.z . . . . . 6 𝑍 = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20771 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1143 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp2 1133 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
109ralimi 3160 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
12 oveq12 7164 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1312anidms 569 . . . . . 6 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1413eqeq1d 2823 . . . . 5 (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍))
15 eqeq1 2825 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 0𝐴 = 0 ))
1614, 15imbi12d 347 . . . 4 (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍𝐴 = 0 )))
1716rspccva 3621 . . 3 ((∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
1811, 17sylan 582 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
192, 3, 1, 6, 4ip0l 20779 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
20 oveq1 7162 . . . 4 (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴))
2120eqeq1d 2823 . . 3 (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍))
2219, 21syl5ibrcom 249 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍))
2318, 22impbid 214 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cmpt 5145  cfv 6354  (class class class)co 7155  Basecbs 16482  *𝑟cstv 16566  Scalarcsca 16567  ·𝑖cip 16569  0gc0g 16712  *-Ringcsr 19614   LMHom clmhm 19790  LVecclvec 19873  ringLModcrglmod 19940  PreHilcphl 20767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-sca 16580  df-vsca 16581  df-ip 16582  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-ghm 18355  df-lmod 19635  df-lmhm 19793  df-lvec 19874  df-sra 19943  df-rgmod 19944  df-phl 20769
This theorem is referenced by:  ip2eq  20796  phlssphl  20802  ocvin  20817  lsmcss  20835  obsne0  20868  cphipeq0  23807  ipcau2  23836  tcphcph  23839
  Copyright terms: Public domain W3C validator