MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipeq0 Structured version   Visualization version   GIF version

Theorem ipeq0 19750
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ip0l.z 𝑍 = (0g𝐹)
ip0l.o 0 = (0g𝑊)
Assertion
Ref Expression
ipeq0 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))

Proof of Theorem ipeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
4 ip0l.o . . . . . 6 0 = (0g𝑊)
5 eqid 2610 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
6 ip0l.z . . . . . 6 𝑍 = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 19740 . . . . 5 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥))))
87simp3bi 1071 . . . 4 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))
9 simp2 1055 . . . . 5 (((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
109ralimi 2936 . . . 4 (∀𝑥𝑉 ((𝑦𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ ∀𝑦𝑉 ((*𝑟𝐹)‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)) → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
118, 10syl 17 . . 3 (𝑊 ∈ PreHil → ∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ))
12 oveq12 6536 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1312anidms 675 . . . . . 6 (𝑥 = 𝐴 → (𝑥 , 𝑥) = (𝐴 , 𝐴))
1413eqeq1d 2612 . . . . 5 (𝑥 = 𝐴 → ((𝑥 , 𝑥) = 𝑍 ↔ (𝐴 , 𝐴) = 𝑍))
15 eqeq1 2614 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 0𝐴 = 0 ))
1614, 15imbi12d 333 . . . 4 (𝑥 = 𝐴 → (((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ↔ ((𝐴 , 𝐴) = 𝑍𝐴 = 0 )))
1716rspccva 3281 . . 3 ((∀𝑥𝑉 ((𝑥 , 𝑥) = 𝑍𝑥 = 0 ) ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
1811, 17sylan 487 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
192, 3, 1, 6, 4ip0l 19748 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ( 0 , 𝐴) = 𝑍)
20 oveq1 6534 . . . 4 (𝐴 = 0 → (𝐴 , 𝐴) = ( 0 , 𝐴))
2120eqeq1d 2612 . . 3 (𝐴 = 0 → ((𝐴 , 𝐴) = 𝑍 ↔ ( 0 , 𝐴) = 𝑍))
2219, 21syl5ibrcom 236 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → (𝐴 = 0 → (𝐴 , 𝐴) = 𝑍))
2318, 22impbid 201 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → ((𝐴 , 𝐴) = 𝑍𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cmpt 4638  cfv 5790  (class class class)co 6527  Basecbs 15644  *𝑟cstv 15719  Scalarcsca 15720  ·𝑖cip 15722  0gc0g 15872  *-Ringcsr 18616   LMHom clmhm 18789  LVecclvec 18872  ringLModcrglmod 18939  PreHilcphl 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-sca 15733  df-vsca 15734  df-ip 15735  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-ghm 17430  df-lmod 18637  df-lmhm 18792  df-lvec 18873  df-sra 18942  df-rgmod 18943  df-phl 19738
This theorem is referenced by:  ip2eq  19765  ocvin  19785  lsmcss  19803  obsne0  19836  cphipeq0  22757  ipcau2  22786  tchcph  22789
  Copyright terms: Public domain W3C validator