MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipf Structured version   Visualization version   GIF version

Theorem ipf 27435
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipcl.1 𝑋 = (BaseSet‘𝑈)
ipcl.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipf (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)

Proof of Theorem ipf
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipcl.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2621 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2621 . . . . . . 7 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2621 . . . . . . 7 (normCV𝑈) = (normCV𝑈)
5 ipcl.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 27425 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
71, 5dipcl 27434 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑃𝑦) ∈ ℂ)
86, 7eqeltrrd 2699 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
983expib 1265 . . . 4 (𝑈 ∈ NrmCVec → ((𝑥𝑋𝑦𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ))
109ralrimivv 2965 . . 3 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ)
11 eqid 2621 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
1211fmpt2 7189 . . 3 (∀𝑥𝑋𝑦𝑋𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4) ∈ ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
1310, 12sylib 208 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ)
141, 2, 3, 4, 5dipfval 27424 . . 3 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
1514feq1d 5992 . 2 (𝑈 ∈ NrmCVec → (𝑃:(𝑋 × 𝑋)⟶ℂ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)):(𝑋 × 𝑋)⟶ℂ))
1613, 15mpbird 247 1 (𝑈 ∈ NrmCVec → 𝑃:(𝑋 × 𝑋)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wral 2907   × cxp 5077  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  cc 9885  1c1 9888  ici 9889   · cmul 9892   / cdiv 10635  2c2 11021  4c4 11023  ...cfz 12275  cexp 12807  Σcsu 14357  NrmCVeccnv 27306   +𝑣 cpv 27307  BaseSetcba 27308   ·𝑠OLD cns 27309  normCVcnmcv 27312  ·𝑖OLDcdip 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-grpo 27214  df-ablo 27266  df-vc 27281  df-nv 27314  df-va 27317  df-ba 27318  df-sm 27319  df-0v 27320  df-nmcv 27322  df-dip 27423
This theorem is referenced by:  hlipf  27633  hhip  27901
  Copyright terms: Public domain W3C validator