Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipodrsfi Structured version   Visualization version   GIF version

Theorem ipodrsfi 17084
 Description: Finite upper bound property for directed collections of sets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
ipodrsfi (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
Distinct variable groups:   𝑧,𝐴   𝑧,𝑋

Proof of Theorem ipodrsfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1060 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋𝐴)
2 ipodrscl 17083 . . . . . 6 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
3 eqid 2621 . . . . . . 7 (toInc‘𝐴) = (toInc‘𝐴)
43ipobas 17076 . . . . . 6 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
52, 4syl 17 . . . . 5 ((toInc‘𝐴) ∈ Dirset → 𝐴 = (Base‘(toInc‘𝐴)))
653ad2ant1 1080 . . . 4 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 = (Base‘(toInc‘𝐴)))
71, 6sseqtrd 3620 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝑋 ⊆ (Base‘(toInc‘𝐴)))
8 eqid 2621 . . . 4 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
9 eqid 2621 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
108, 9drsdirfi 16859 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋 ⊆ (Base‘(toInc‘𝐴)) ∧ 𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
117, 10syld3an2 1370 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧)
126rexeqdv 3134 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧))
1323ad2ant1 1080 . . . . . . . . 9 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → 𝐴 ∈ V)
1413adantr 481 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝐴 ∈ V)
151sselda 3583 . . . . . . . . 9 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑤𝑋) → 𝑤𝐴)
1615adantrl 751 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑤𝐴)
17 simprl 793 . . . . . . . 8 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → 𝑧𝐴)
183, 9ipole 17079 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑤𝐴𝑧𝐴) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
1914, 16, 17, 18syl3anc 1323 . . . . . . 7 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ (𝑧𝐴𝑤𝑋)) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2019anassrs 679 . . . . . 6 (((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) ∧ 𝑤𝑋) → (𝑤(le‘(toInc‘𝐴))𝑧𝑤𝑧))
2120ralbidva 2979 . . . . 5 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∀𝑤𝑋 𝑤𝑧))
22 unissb 4435 . . . . 5 ( 𝑋𝑧 ↔ ∀𝑤𝑋 𝑤𝑧)
2321, 22syl6bbr 278 . . . 4 ((((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) ∧ 𝑧𝐴) → (∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 𝑋𝑧))
2423rexbidva 3042 . . 3 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧𝐴𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2512, 24bitr3d 270 . 2 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → (∃𝑧 ∈ (Base‘(toInc‘𝐴))∀𝑤𝑋 𝑤(le‘(toInc‘𝐴))𝑧 ↔ ∃𝑧𝐴 𝑋𝑧))
2611, 25mpbid 222 1 (((toInc‘𝐴) ∈ Dirset ∧ 𝑋𝐴𝑋 ∈ Fin) → ∃𝑧𝐴 𝑋𝑧)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  Vcvv 3186   ⊆ wss 3555  ∪ cuni 4402   class class class wbr 4613  ‘cfv 5847  Fincfn 7899  Basecbs 15781  lecple 15869  Dirsetcdrs 16848  toInccipo 17072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-tset 15881  df-ple 15882  df-ocomp 15884  df-preset 16849  df-drs 16850  df-poset 16867  df-ipo 17073 This theorem is referenced by:  isacs3lem  17087  isnacs3  36750
 Copyright terms: Public domain W3C validator