MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipval2 Structured version   Visualization version   GIF version

Theorem ipval2 28487
Description: Expansion of the inner product value ipval 28483. (Contributed by NM, 31-Jan-2007.) (Revised by Mario Carneiro, 5-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))

Proof of Theorem ipval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dipfval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . 3 𝑁 = (normCV𝑈)
5 dipfval.7 . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval 28483 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4))
7 ax-icn 10599 . . . . . . . . 9 i ∈ ℂ
81, 2, 3, 4, 5ipval2lem4 28486 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
97, 8mpan2 689 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
10 mulcl 10624 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
117, 9, 10sylancr 589 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ)
12 neg1cn 11754 . . . . . . . . 9 -1 ∈ ℂ
131, 2, 3, 4, 5ipval2lem4 28486 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -1 ∈ ℂ) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1412, 13mpan2 689 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
1511, 14subcld 11000 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
16 negicn 10890 . . . . . . . . 9 -i ∈ ℂ
171, 2, 3, 4, 5ipval2lem4 28486 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ -i ∈ ℂ) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
1816, 17mpan2 689 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
19 mulcl 10624 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
207, 18, 19sylancr 589 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
2115, 20negsubd 11006 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
2214mulm1d 11095 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
2322oveq2d 7175 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2411, 14negsubd 11006 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + -((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
2523, 24eqtrd 2859 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
26 mulneg1 11079 . . . . . . . 8 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
277, 18, 26sylancr 589 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) = -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
2825, 27oveq12d 7177 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + -(i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
29 subdi 11076 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
307, 29mp3an1 1444 . . . . . . . . 9 ((((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ ∧ ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
319, 18, 30syl2anc 586 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3231oveq1d 7174 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
3311, 20, 14sub32d 11032 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3432, 33eqtrd 2859 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) − (i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
3521, 28, 343eqtr4d 2869 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
361, 3nvsid 28407 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3736oveq2d 7175 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴𝐺(1𝑆𝐵)) = (𝐴𝐺𝐵))
3837fveq2d 6677 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(𝐴𝐺(1𝑆𝐵))) = (𝑁‘(𝐴𝐺𝐵)))
3938oveq1d 7174 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
40393adant2 1127 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4140oveq2d 7175 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)))
421, 2, 3, 4, 5ipval2lem3 28485 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℝ)
4342recnd 10672 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
4443mulid2d 10662 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4541, 44eqtrd 2859 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
4635, 45oveq12d 7177 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
47 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
48 df-4 11705 . . . . . 6 4 = (3 + 1)
49 oveq2 7167 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
50 i4 13570 . . . . . . . 8 (i↑4) = 1
5149, 50syl6eq 2875 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
5251oveq1d 7174 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘)𝑆𝐵) = (1𝑆𝐵))
5352oveq2d 7175 . . . . . . . . 9 (𝑘 = 4 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(1𝑆𝐵)))
5453fveq2d 6677 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(1𝑆𝐵))))
5554oveq1d 7174 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))
5651, 55oveq12d 7177 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))
57 nnnn0 11907 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
58 expcl 13450 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
597, 57, 58sylancr 589 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
6059adantl 484 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
611, 2, 3, 4, 5ipval2lem4 28486 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ (i↑𝑘) ∈ ℂ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6259, 61sylan2 594 . . . . . . 7 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) ∈ ℂ)
6360, 62mulcld 10664 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) ∈ ℂ)
64 df-3 11704 . . . . . . 7 3 = (2 + 1)
65 oveq2 7167 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
66 i3 13569 . . . . . . . . 9 (i↑3) = -i
6765, 66syl6eq 2875 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
6867oveq1d 7174 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘)𝑆𝐵) = (-i𝑆𝐵))
6968oveq2d 7175 . . . . . . . . . 10 (𝑘 = 3 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-i𝑆𝐵)))
7069fveq2d 6677 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-i𝑆𝐵))))
7170oveq1d 7174 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))
7267, 71oveq12d 7177 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))
73 df-2 11703 . . . . . . . 8 2 = (1 + 1)
74 oveq2 7167 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
75 i2 13568 . . . . . . . . . 10 (i↑2) = -1
7674, 75syl6eq 2875 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
7776oveq1d 7174 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘)𝑆𝐵) = (-1𝑆𝐵))
7877oveq2d 7175 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(-1𝑆𝐵)))
7978fveq2d 6677 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
8079oveq1d 7174 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
8176, 80oveq12d 7177 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
82 1z 12015 . . . . . . . . . 10 1 ∈ ℤ
83 oveq2 7167 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
84 exp1 13438 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
857, 84ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
8683, 85syl6eq 2875 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
8786oveq1d 7174 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘)𝑆𝐵) = (i𝑆𝐵))
8887oveq2d 7175 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴𝐺((i↑𝑘)𝑆𝐵)) = (𝐴𝐺(i𝑆𝐵)))
8988fveq2d 6677 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
9089oveq1d 7174 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2) = ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))
9186, 90oveq12d 7177 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9291fsum1 15105 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
9382, 11, 92sylancr 589 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)))
94 1nn 11652 . . . . . . . . 9 1 ∈ ℕ
9593, 94jctil 522 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2))))
96 eqidd 2825 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
9747, 73, 81, 63, 95, 96fsump1i 15127 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))))
98 eqidd 2825 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))))
9947, 64, 72, 63, 97, 98fsump1i 15127 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = (((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
100 eqidd 2825 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10147, 48, 56, 63, 99, 100fsump1i 15127 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2)))))
102101simprd 498 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) + (-i · ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (1 · ((𝑁‘(𝐴𝐺(1𝑆𝐵)))↑2))))
10343, 14subcld 11000 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
1049, 18subcld 11000 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
105 mulcl 10624 . . . . . . 7 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
1067, 104, 105sylancr 589 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
107103, 106addcomd 10845 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
108106, 14, 43subadd23d 11022 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)) = ((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) + (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))))
109107, 108eqtr4d 2862 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) = (((i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + ((𝑁‘(𝐴𝐺𝐵))↑2)))
11046, 102, 1093eqtr4d 2869 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
111110oveq1d 7174 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴𝐺((i↑𝑘)𝑆𝐵)))↑2)) / 4) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
1126, 111eqtrd 2859 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  cc 10538  1c1 10541  ici 10542   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874   / cdiv 11300  cn 11641  2c2 11695  3c3 11696  4c4 11697  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  Σcsu 15045  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367  normCVcnmcv 28370  ·𝑖OLDcdip 28480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-grpo 28273  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-nmcv 28380  df-dip 28481
This theorem is referenced by:  4ipval2  28488  ipval3  28489  ipidsq  28490  dipcj  28494  dip0r  28497
  Copyright terms: Public domain W3C validator