Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irinitoringc Structured version   Visualization version   GIF version

Theorem irinitoringc 41357
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
irinitoringc.u (𝜑𝑈𝑉)
irinitoringc.z (𝜑 → ℤring𝑈)
irinitoringc.c 𝐶 = (RingCat‘𝑈)
Assertion
Ref Expression
irinitoringc (𝜑 → ℤring ∈ (InitO‘𝐶))

Proof of Theorem irinitoringc
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11330 . . . . . 6 ℤ ∈ V
21mptex 6440 . . . . 5 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V
3 irinitoringc.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
4 eqid 2621 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
5 irinitoringc.u . . . . . . . . 9 (𝜑𝑈𝑉)
6 eqid 2621 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
73, 4, 5, 6ringchomfval 41300 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
87adantr 481 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
98oveqd 6621 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟))
10 irinitoringc.z . . . . . . . . . 10 (𝜑 → ℤring𝑈)
11 id 22 . . . . . . . . . . 11 (ℤring𝑈 → ℤring𝑈)
12 zringring 19740 . . . . . . . . . . . 12 ring ∈ Ring
1312a1i 11 . . . . . . . . . . 11 (ℤring𝑈 → ℤring ∈ Ring)
1411, 13elind 3776 . . . . . . . . . 10 (ℤring𝑈 → ℤring ∈ (𝑈 ∩ Ring))
1510, 14syl 17 . . . . . . . . 9 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
163, 4, 5ringcbas 41299 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
1715, 16eleqtrrd 2701 . . . . . . . 8 (𝜑 → ℤring ∈ (Base‘𝐶))
1817adantr 481 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶))
19 simpr 477 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
2018, 19ovresd 6754 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟))
2116eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
22 elin 3774 . . . . . . . . . 10 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
2322simprbi 480 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
2421, 23syl6bi 243 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
2524imp 445 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
26 eqid 2621 . . . . . . . 8 (.g𝑟) = (.g𝑟)
27 eqid 2621 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))
28 eqid 2621 . . . . . . . 8 (1r𝑟) = (1r𝑟)
2926, 27, 28mulgrhm2 19766 . . . . . . 7 (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3025, 29syl 17 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
319, 20, 303eqtrd 2659 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
32 sneq 4158 . . . . . . 7 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3332eqeq2d 2631 . . . . . 6 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))}))
3433spcegv 3280 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}))
352, 31, 34mpsyl 68 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
36 eusn 4235 . . . 4 (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
3735, 36sylibr 224 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
3837ralrimiva 2960 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
393ringccat 41312 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
405, 39syl 17 . . 3 (𝜑𝐶 ∈ Cat)
4112a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
4210, 41elind 3776 . . . 4 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
4342, 16eleqtrrd 2701 . . 3 (𝜑 → ℤring ∈ (Base‘𝐶))
444, 6, 40, 43isinito 16571 . 2 (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)))
4538, 44mpbird 247 1 (𝜑 → ℤring ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  ∃!weu 2469  wral 2907  Vcvv 3186  cin 3554  {csn 4148  cmpt 4673   × cxp 5072  cres 5076  cfv 5847  (class class class)co 6604  cz 11321  Basecbs 15781  Hom chom 15873  Catccat 16246  InitOcinito 16559  .gcmg 17461  1rcur 18422  Ringcrg 18468   RingHom crh 18633  ringzring 19737  RingCatcringc 41291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-seq 12742  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-cat 16250  df-cid 16251  df-homf 16252  df-ssc 16391  df-resc 16392  df-subc 16393  df-inito 16562  df-estrc 16684  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-rnghom 18636  df-subrg 18699  df-cnfld 19666  df-zring 19738  df-ringc 41293
This theorem is referenced by:  nzerooringczr  41360
  Copyright terms: Public domain W3C validator