Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irinitoringc Structured version   Visualization version   GIF version

Theorem irinitoringc 44268
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
irinitoringc.u (𝜑𝑈𝑉)
irinitoringc.z (𝜑 → ℤring𝑈)
irinitoringc.c 𝐶 = (RingCat‘𝑈)
Assertion
Ref Expression
irinitoringc (𝜑 → ℤring ∈ (InitO‘𝐶))

Proof of Theorem irinitoringc
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11978 . . . . . 6 ℤ ∈ V
21mptex 6977 . . . . 5 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V
3 irinitoringc.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
4 eqid 2818 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
5 irinitoringc.u . . . . . . . . 9 (𝜑𝑈𝑉)
6 eqid 2818 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
73, 4, 5, 6ringchomfval 44211 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
87adantr 481 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶))))
98oveqd 7162 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟))
10 irinitoringc.z . . . . . . . . . 10 (𝜑 → ℤring𝑈)
11 id 22 . . . . . . . . . . 11 (ℤring𝑈 → ℤring𝑈)
12 zringring 20548 . . . . . . . . . . . 12 ring ∈ Ring
1312a1i 11 . . . . . . . . . . 11 (ℤring𝑈 → ℤring ∈ Ring)
1411, 13elind 4168 . . . . . . . . . 10 (ℤring𝑈 → ℤring ∈ (𝑈 ∩ Ring))
1510, 14syl 17 . . . . . . . . 9 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
163, 4, 5ringcbas 44210 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
1715, 16eleqtrrd 2913 . . . . . . . 8 (𝜑 → ℤring ∈ (Base‘𝐶))
1817adantr 481 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → ℤring ∈ (Base‘𝐶))
19 simpr 485 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ (Base‘𝐶))
2018, 19ovresd 7304 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))𝑟) = (ℤring RingHom 𝑟))
2116eleq2d 2895 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (Base‘𝐶) ↔ 𝑟 ∈ (𝑈 ∩ Ring)))
22 elin 4166 . . . . . . . . . 10 (𝑟 ∈ (𝑈 ∩ Ring) ↔ (𝑟𝑈𝑟 ∈ Ring))
2322simprbi 497 . . . . . . . . 9 (𝑟 ∈ (𝑈 ∩ Ring) → 𝑟 ∈ Ring)
2421, 23syl6bi 254 . . . . . . . 8 (𝜑 → (𝑟 ∈ (Base‘𝐶) → 𝑟 ∈ Ring))
2524imp 407 . . . . . . 7 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑟 ∈ Ring)
26 eqid 2818 . . . . . . . 8 (.g𝑟) = (.g𝑟)
27 eqid 2818 . . . . . . . 8 (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))
28 eqid 2818 . . . . . . . 8 (1r𝑟) = (1r𝑟)
2926, 27, 28mulgrhm2 20574 . . . . . . 7 (𝑟 ∈ Ring → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3025, 29syl 17 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring RingHom 𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
319, 20, 303eqtrd 2857 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
32 sneq 4567 . . . . . . 7 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → {𝑓} = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))})
3332eqeq2d 2829 . . . . . 6 (𝑓 = (𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) → ((ℤring(Hom ‘𝐶)𝑟) = {𝑓} ↔ (ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))}))
3433spcegv 3594 . . . . 5 ((𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟))) ∈ V → ((ℤring(Hom ‘𝐶)𝑟) = {(𝑧 ∈ ℤ ↦ (𝑧(.g𝑟)(1r𝑟)))} → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓}))
352, 31, 34mpsyl 68 . . . 4 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
36 eusn 4658 . . . 4 (∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟) ↔ ∃𝑓(ℤring(Hom ‘𝐶)𝑟) = {𝑓})
3735, 36sylibr 235 . . 3 ((𝜑𝑟 ∈ (Base‘𝐶)) → ∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
3837ralrimiva 3179 . 2 (𝜑 → ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟))
393ringccat 44223 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
405, 39syl 17 . . 3 (𝜑𝐶 ∈ Cat)
4112a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
4210, 41elind 4168 . . . 4 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
4342, 16eleqtrrd 2913 . . 3 (𝜑 → ℤring ∈ (Base‘𝐶))
444, 6, 40, 43isinito 17248 . 2 (𝜑 → (ℤring ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (ℤring(Hom ‘𝐶)𝑟)))
4538, 44mpbird 258 1 (𝜑 → ℤring ∈ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  ∃!weu 2646  wral 3135  Vcvv 3492  cin 3932  {csn 4557  cmpt 5137   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7145  cz 11969  Basecbs 16471  Hom chom 16564  Catccat 16923  InitOcinito 17236  .gcmg 18162  1rcur 19180  Ringcrg 19226   RingHom crh 19393  ringzring 20545  RingCatcringc 44202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-seq 13358  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-cat 16927  df-cid 16928  df-homf 16929  df-ssc 17068  df-resc 17069  df-subc 17070  df-inito 17239  df-estrc 17361  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cmn 18837  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-rnghom 19396  df-subrg 19462  df-cnfld 20474  df-zring 20546  df-ringc 44204
This theorem is referenced by:  nzerooringczr  44271
  Copyright terms: Public domain W3C validator