Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapx1 Structured version   Visualization version   GIF version

Theorem irrapx1 36204
Description: Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
irrapx1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
Distinct variable group:   𝑦,𝐴

Proof of Theorem irrapx1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qnnen 14730 . . . 4 ℚ ≈ ℕ
2 nnenom 12599 . . . 4 ℕ ≈ ω
31, 2entri 7874 . . 3 ℚ ≈ ω
43, 2pm3.2i 470 . 2 (ℚ ≈ ω ∧ ℕ ≈ ω)
5 ssrab2 3650 . . . . . 6 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ
6 qssre 11633 . . . . . 6 ℚ ⊆ ℝ
75, 6sstri 3577 . . . . 5 {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ
87a1i 11 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ)
9 eldifi 3694 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ+)
109rpred 11707 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → 𝐴 ∈ ℝ)
11 eldifn 3695 . . . . 5 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
12 elrabi 3328 . . . . 5 (𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} → 𝐴 ∈ ℚ)
1311, 12nsyl 134 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
14 irrapxlem6 36203 . . . . . 6 ((𝐴 ∈ ℝ+𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
159, 14sylan 487 . . . . 5 ((𝐴 ∈ (ℝ+ ∖ ℚ) ∧ 𝑎 ∈ ℝ+) → ∃𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
1615ralrimiva 2949 . . . 4 (𝐴 ∈ (ℝ+ ∖ ℚ) → ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎)
17 rencldnfi 36197 . . . 4 ((({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))}) ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑏𝐴)) < 𝑎) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
188, 10, 13, 16, 17syl31anc 1321 . . 3 (𝐴 ∈ (ℝ+ ∖ ℚ) → ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)
1918, 5jctil 558 . 2 (𝐴 ∈ (ℝ+ ∖ ℚ) → ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin))
20 ctbnfien 36194 . 2 (((ℚ ≈ ω ∧ ℕ ≈ ω) ∧ ({𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ⊆ ℚ ∧ ¬ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∈ Fin)) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
214, 19, 20sylancr 694 1 (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 1977  wral 2896  wrex 2897  {crab 2900  cdif 3537  wss 3540   class class class wbr 4578  cfv 5790  (class class class)co 6527  ωcom 6935  cen 7816  Fincfn 7819  cr 9792  0cc0 9793   < clt 9931  cmin 10118  -cneg 10119  cn 10870  2c2 10920  cq 11623  +crp 11667  cexp 12680  abscabs 13771  denomcdenom 15229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-acn 8629  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-q 11624  df-rp 11668  df-ico 12011  df-fz 12156  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-dvds 14771  df-gcd 15004  df-numer 15230  df-denom 15231
This theorem is referenced by:  pellexlem4  36208
  Copyright terms: Public domain W3C validator