Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem3 Structured version   Visualization version   GIF version

Theorem irrapxlem3 39428
Description: Lemma for irrapx1 39432. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irrapxlem2 39427 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)))
2 1m1e0 11712 . . . . . . . . 9 (1 − 1) = 0
3 elfzelz 12911 . . . . . . . . . . . . 13 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
43ad2antrl 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℤ)
54zred 12090 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑎 ∈ ℝ)
6 elfzelz 12911 . . . . . . . . . . . . 13 (𝑏 ∈ (0...𝐵) → 𝑏 ∈ ℤ)
76ad2antll 727 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℤ)
87zred 12090 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → 𝑏 ∈ ℝ)
95, 8posdifd 11229 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
109biimpa 479 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < (𝑏𝑎))
112, 10eqbrtrid 5103 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 − 1) < (𝑏𝑎))
12 1z 12015 . . . . . . . . 9 1 ∈ ℤ
13 simplrr 776 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (0...𝐵))
1413, 6syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℤ)
15 simplrl 775 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (0...𝐵))
1615, 3syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℤ)
1714, 16zsubcld 12095 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℤ)
18 zlem1lt 12037 . . . . . . . . 9 ((1 ∈ ℤ ∧ (𝑏𝑎) ∈ ℤ) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
1912, 17, 18sylancr 589 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (1 ≤ (𝑏𝑎) ↔ (1 − 1) < (𝑏𝑎)))
2011, 19mpbird 259 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ≤ (𝑏𝑎))
2114zred 12090 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℝ)
2216zred 12090 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℝ)
2321, 22resubcld 11070 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ ℝ)
24 0red 10646 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ∈ ℝ)
2521, 24resubcld 11070 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ∈ ℝ)
26 simpllr 774 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℕ)
2726nnred 11655 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℝ)
28 elfzle1 12913 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 0 ≤ 𝑎)
2915, 28syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 ≤ 𝑎)
3024, 22, 21, 29lesub2dd 11259 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ (𝑏 − 0))
3121recnd 10671 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ ℂ)
3231subid1d 10988 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) = 𝑏)
33 elfzle2 12914 . . . . . . . . . 10 (𝑏 ∈ (0...𝐵) → 𝑏𝐵)
3413, 33syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑏𝐵)
3532, 34eqbrtrd 5090 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏 − 0) ≤ 𝐵)
3623, 25, 27, 30, 35letrd 10799 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ≤ 𝐵)
3712a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℤ)
3826nnzd 12089 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐵 ∈ ℤ)
39 elfz 12901 . . . . . . . 8 (((𝑏𝑎) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑏𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏𝑎) ∧ (𝑏𝑎) ≤ 𝐵)))
4017, 37, 38, 39syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝑏𝑎) ∈ (1...𝐵) ↔ (1 ≤ (𝑏𝑎) ∧ (𝑏𝑎) ≤ 𝐵)))
4120, 36, 40mpbir2and 711 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑏𝑎) ∈ (1...𝐵))
4241adantrr 715 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (𝑏𝑎) ∈ (1...𝐵))
43 rpre 12400 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
4443ad3antrrr 728 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℝ)
4544, 22remulcld 10673 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℝ)
4644, 21remulcld 10673 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℝ)
47 simpr 487 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4822, 21, 47ltled 10790 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎𝑏)
49 rpgt0 12404 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → 0 < 𝐴)
5049ad3antrrr 728 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 0 < 𝐴)
51 lemul2 11495 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5222, 21, 44, 50, 51syl112anc 1370 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝑎𝑏 ↔ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)))
5348, 52mpbid 234 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ≤ (𝐴 · 𝑏))
54 flword2 13186 . . . . . . . 8 (((𝐴 · 𝑎) ∈ ℝ ∧ (𝐴 · 𝑏) ∈ ℝ ∧ (𝐴 · 𝑎) ≤ (𝐴 · 𝑏)) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
5545, 46, 53, 54syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))))
56 uznn0sub 12280 . . . . . . 7 ((⌊‘(𝐴 · 𝑏)) ∈ (ℤ‘(⌊‘(𝐴 · 𝑎))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5755, 56syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5857adantrr 715 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0)
5944recnd 10671 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝐴 ∈ ℂ)
6022recnd 10671 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ ℂ)
6159, 31, 60subdid 11098 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · (𝑏𝑎)) = ((𝐴 · 𝑏) − (𝐴 · 𝑎)))
6261oveq1d 7173 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
6346recnd 10671 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑏) ∈ ℂ)
6445recnd 10671 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (𝐴 · 𝑎) ∈ ℂ)
6546flcld 13171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℤ)
6665zcnd 12091 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑏)) ∈ ℂ)
6745flcld 13171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℤ)
6867zcnd 12091 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (⌊‘(𝐴 · 𝑎)) ∈ ℂ)
6963, 64, 66, 68sub4d 11048 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (𝐴 · 𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))))
70 modfrac 13255 . . . . . . . . . . . . . 14 ((𝐴 · 𝑏) ∈ ℝ → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
7146, 70syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) = ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))))
7271eqcomd 2829 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) = ((𝐴 · 𝑏) mod 1))
73 modfrac 13255 . . . . . . . . . . . . . 14 ((𝐴 · 𝑎) ∈ ℝ → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7445, 73syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))))
7574eqcomd 2829 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎))) = ((𝐴 · 𝑎) mod 1))
7672, 75oveq12d 7176 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (((𝐴 · 𝑏) − (⌊‘(𝐴 · 𝑏))) − ((𝐴 · 𝑎) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7762, 69, 763eqtrd 2862 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))) = (((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1)))
7877fveq2d 6676 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) = (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))))
79 1rp 12396 . . . . . . . . . . . . 13 1 ∈ ℝ+
8079a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → 1 ∈ ℝ+)
8146, 80modcld 13246 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℝ)
8281recnd 10671 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑏) mod 1) ∈ ℂ)
8345, 80modcld 13246 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
8483recnd 10671 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((𝐴 · 𝑎) mod 1) ∈ ℂ)
8582, 84abssubd 14815 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑏) mod 1) − ((𝐴 · 𝑎) mod 1))) = (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))))
8678, 85eqtr2d 2859 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
8786breq1d 5078 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8887biimpd 231 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ 𝑎 < 𝑏) → ((abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
8988impr 457 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵))
90 oveq2 7166 . . . . . . . 8 (𝑥 = (𝑏𝑎) → (𝐴 · 𝑥) = (𝐴 · (𝑏𝑎)))
9190fvoveq1d 7180 . . . . . . 7 (𝑥 = (𝑏𝑎) → (abs‘((𝐴 · 𝑥) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)))
9291breq1d 5078 . . . . . 6 (𝑥 = (𝑏𝑎) → ((abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵)))
93 oveq2 7166 . . . . . . . 8 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((𝐴 · (𝑏𝑎)) − 𝑦) = ((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎)))))
9493fveq2d 6676 . . . . . . 7 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → (abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) = (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))))
9594breq1d 5078 . . . . . 6 (𝑦 = ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) → ((abs‘((𝐴 · (𝑏𝑎)) − 𝑦)) < (1 / 𝐵) ↔ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)))
9692, 95rspc2ev 3637 . . . . 5 (((𝑏𝑎) ∈ (1...𝐵) ∧ ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))) ∈ ℕ0 ∧ (abs‘((𝐴 · (𝑏𝑎)) − ((⌊‘(𝐴 · 𝑏)) − (⌊‘(𝐴 · 𝑎))))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9742, 58, 89, 96syl3anc 1367 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) ∧ (𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵))) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
9897ex 415 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐵) ∧ 𝑏 ∈ (0...𝐵))) → ((𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
9998rexlimdvva 3296 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑎 ∈ (0...𝐵)∃𝑏 ∈ (0...𝐵)(𝑎 < 𝑏 ∧ (abs‘(((𝐴 · 𝑎) mod 1) − ((𝐴 · 𝑏) mod 1))) < (1 / 𝐵)) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)))
1001, 99mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  cfl 13163   mod cmo 13240  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  irrapxlem4  39429
  Copyright terms: Public domain W3C validator