Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   GIF version

Theorem irrapxlem6 37893
Description: Lemma for irrapx1 37894. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 809 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ)
2 simpr1 1234 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎)
3 simpr3 1238 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))
42, 3jca 555 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
5 breq2 4808 . . . . . 6 (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎))
6 oveq1 6820 . . . . . . . 8 (𝑦 = 𝑎 → (𝑦𝐴) = (𝑎𝐴))
76fveq2d 6356 . . . . . . 7 (𝑦 = 𝑎 → (abs‘(𝑦𝐴)) = (abs‘(𝑎𝐴)))
8 fveq2 6352 . . . . . . . 8 (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎))
98oveq1d 6828 . . . . . . 7 (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2))
107, 9breq12d 4817 . . . . . 6 (𝑦 = 𝑎 → ((abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
115, 10anbi12d 749 . . . . 5 (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
1211elrab 3504 . . . 4 (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
131, 4, 12sylanbrc 701 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
14 simpr2 1236 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < 𝐵)
15 oveq1 6820 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
1615fveq2d 6356 . . . . 5 (𝑥 = 𝑎 → (abs‘(𝑥𝐴)) = (abs‘(𝑎𝐴)))
1716breq1d 4814 . . . 4 (𝑥 = 𝑎 → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘(𝑎𝐴)) < 𝐵))
1817rspcev 3449 . . 3 ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
1913, 14, 18syl2anc 696 . 2 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
20 irrapxlem5 37892 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
2119, 20r19.29a 3216 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139  wrex 3051  {crab 3054   class class class wbr 4804  cfv 6049  (class class class)co 6813  0cc0 10128   < clt 10266  cmin 10458  -cneg 10459  2c2 11262  cq 11981  +crp 12025  cexp 13054  abscabs 14173  denomcdenom 15644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-ico 12374  df-fz 12520  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646
This theorem is referenced by:  irrapx1  37894
  Copyright terms: Public domain W3C validator