![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > is1stc | Structured version Visualization version GIF version |
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
Ref | Expression |
---|---|
is1stc.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
is1stc | ⊢ (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4594 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
2 | is1stc.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6eqr 2810 | . . 3 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
4 | pweq 4303 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
5 | raleq 3275 | . . . . 5 ⊢ (𝑗 = 𝐽 → (∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))) | |
6 | 5 | anbi2d 742 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
7 | 4, 6 | rexeqbidv 3290 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
8 | 3, 7 | raleqbidv 3289 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
9 | df-1stc 21442 | . 2 ⊢ 1st𝜔 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | |
10 | 8, 9 | elrab2 3505 | 1 ⊢ (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∃wrex 3049 ∩ cin 3712 𝒫 cpw 4300 ∪ cuni 4586 class class class wbr 4802 ωcom 7228 ≼ cdom 8117 Topctop 20898 1st𝜔c1stc 21440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-in 3720 df-ss 3727 df-pw 4302 df-uni 4587 df-1stc 21442 |
This theorem is referenced by: is1stc2 21445 1stctop 21446 |
Copyright terms: Public domain | W3C validator |