MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc Structured version   Visualization version   GIF version

Theorem is1stc 21154
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.)
Hypothesis
Ref Expression
is1stc.1 𝑋 = 𝐽
Assertion
Ref Expression
is1stc (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem is1stc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4410 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 is1stc.1 . . . 4 𝑋 = 𝐽
31, 2syl6eqr 2673 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 pweq 4133 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
5 raleq 3127 . . . . 5 (𝑗 = 𝐽 → (∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))))
65anbi2d 739 . . . 4 (𝑗 = 𝐽 → ((𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
74, 6rexeqbidv 3142 . . 3 (𝑗 = 𝐽 → (∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
83, 7raleqbidv 3141 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
9 df-1stc 21152 . 2 1st𝜔 = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))}
108, 9elrab2 3348 1 (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cin 3554  𝒫 cpw 4130   cuni 4402   class class class wbr 4613  ωcom 7012  cdom 7897  Topctop 20617  1st𝜔c1stc 21150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-in 3562  df-ss 3569  df-pw 4132  df-uni 4403  df-1stc 21152
This theorem is referenced by:  is1stc2  21155  1stctop  21156
  Copyright terms: Public domain W3C validator