MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc Structured version   Visualization version   GIF version

Theorem is1stc 22048
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.)
Hypothesis
Ref Expression
is1stc.1 𝑋 = 𝐽
Assertion
Ref Expression
is1stc (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem is1stc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4848 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 is1stc.1 . . . 4 𝑋 = 𝐽
31, 2syl6eqr 2874 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 pweq 4554 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
5 raleq 3405 . . . . 5 (𝑗 = 𝐽 → (∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))))
65anbi2d 630 . . . 4 (𝑗 = 𝐽 → ((𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
74, 6rexeqbidv 3402 . . 3 (𝑗 = 𝐽 → (∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
83, 7raleqbidv 3401 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
9 df-1stc 22046 . 2 1stω = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))}
108, 9elrab2 3682 1 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3934  𝒫 cpw 4538   cuni 4837   class class class wbr 5065  ωcom 7579  cdom 8506  Topctop 21500  1stωc1stc 22044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-in 3942  df-ss 3951  df-pw 4540  df-uni 4838  df-1stc 22046
This theorem is referenced by:  is1stc2  22049  1stctop  22050
  Copyright terms: Public domain W3C validator