MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs4lem Structured version   Visualization version   GIF version

Theorem isacs4lem 17780
Description: In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs4lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs4lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐶 ∈ (Moore‘𝑋))
2 elpwi 4550 . . . . . . . 8 (𝑡 ∈ 𝒫 𝒫 𝑋𝑡 ⊆ 𝒫 𝑋)
32ad2antrl 726 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
4 acsdrscl.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
54mrcuni 16894 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ⊆ 𝒫 𝑋) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
61, 3, 5syl2anc 586 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
74mrcf 16882 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
87ffnd 6517 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
98adantr 483 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐹 Fn 𝒫 𝑋)
10 simpll 765 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝐶 ∈ (Moore‘𝑋))
11 simprl 769 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑥𝑦)
12 simprr 771 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑦𝑋)
1310, 4, 11, 12mrcssd 16897 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → (𝐹𝑥) ⊆ (𝐹𝑦))
14 simprr 771 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘𝑡) ∈ Dirset)
152ad2antrl 726 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
164fvexi 6686 . . . . . . . . . . . 12 𝐹 ∈ V
1716imaex 7623 . . . . . . . . . . 11 (𝐹𝑡) ∈ V
1817a1i 11 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ V)
199, 13, 14, 15, 18ipodrsima 17777 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
2019adantlr 713 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
21 fveq2 6672 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → (toInc‘𝑠) = (toInc‘(𝐹𝑡)))
2221eleq1d 2899 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘(𝐹𝑡)) ∈ Dirset))
23 unieq 4851 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → 𝑠 = (𝐹𝑡))
2423eleq1d 2899 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ( 𝑠𝐶 (𝐹𝑡) ∈ 𝐶))
2522, 24imbi12d 347 . . . . . . . . 9 (𝑠 = (𝐹𝑡) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶)))
26 simplr 767 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
27 imassrn 5942 . . . . . . . . . . . 12 (𝐹𝑡) ⊆ ran 𝐹
287frnd 6523 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝐶)
2927, 28sstrid 3980 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ⊆ 𝐶)
3017elpw 4545 . . . . . . . . . . 11 ((𝐹𝑡) ∈ 𝒫 𝐶 ↔ (𝐹𝑡) ⊆ 𝐶)
3129, 30sylibr 236 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ∈ 𝒫 𝐶)
3231ad2antrr 724 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝒫 𝐶)
3325, 26, 32rspcdva 3627 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶))
3420, 33mpd 15 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝐶)
354mrcid 16886 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑡) ∈ 𝐶) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
361, 34, 35syl2anc 586 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
376, 36eqtrd 2858 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹𝑡))
3837exp32 423 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝑡 ∈ 𝒫 𝒫 𝑋 → ((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
3938ralrimiv 3183 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
4039ex 415 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
4140imdistani 571 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  𝒫 cpw 4541   cuni 4840  ran crn 5558  cima 5560   Fn wfn 6352  cfv 6357  Moorecmre 16855  mrClscmrc 16856  Dirsetcdrs 17539  toInccipo 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-tset 16586  df-ple 16587  df-ocomp 16588  df-mre 16859  df-mrc 16860  df-proset 17540  df-drs 17541  df-poset 17558  df-ipo 17764
This theorem is referenced by:  acsdrscl  17782  acsficl  17783  isacs5  17784  isacs4  17785  isacs3  17786
  Copyright terms: Public domain W3C validator